Botanica Pacifica

Research paper

Botanica Pacifica. A journal of plant science and conservation 2020. 9(1): 53-62
Article first published online: 09 APR 2020 | DOI: 10.17581/bp.2020.09109

Do patterns of intra-specific variability and community weighted-means of leaf traits correspond? An example from alpine plants

Vladimir G. Onipchenko1, Artem O. Rozhin1, Vadim E. Smirnov2,3, Asem A. Akhmetzhanova1, Tatiana G. Elumeeva1, Olga P. Khubieva4, Ksenia V. Dudova1, Nadezhda A. Soudzilovskaia5 & Johannes H.C. Cornelissen6

1 Lomonosov Moscow State University, Faculty of Biology, Dept. Ecology and Plant Geography, Moscow, Russia
2 Center for Forest Ecology and Productivity RAS, Moscow, Russia
3 Institute of Mathematical Problems of Biology RAS, Pushchino, Russia
4 North Caucasian State Academy, Cherkessk, KChR, Russia
5 Institute of Environmental Sciences CML, Leiden University, Leiden, The Netherlands
6 Department of Ecological Science, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

Intraspecific variability of the traits is usually less than interspecific, but directions of inter- and intraspecific variation along environmental gradients are not well studied. For 17 alpine species we test a hypothesis that the direction of intraspecific variation in leaf traits among different communities along an environmental gradient coincides consistently with community weighted mean (CWM) trait variation at the community level along the same gradient. We obtained two groups of leaf traits according to their response to CWM and topographic (snow depth and snow melt) gradients. For leaf mass and area intraspecific variation corresponded to CWM variation among communities. SLA, water content and leaf thickness patterns within species changed directly among communities according to the toposequence (snowmelt gradient). These results are well expressed for forbs, but mostly they were not significant for graminoids. For leaf area we obtained opposite response of forbs and graminoids to snowmelt gradient. Forbs increased, but graminoids decreased leaf area when snow depth increased. Intraspecific trait variation across natural gradients does not necessarily follow that for interspecific or community-level variation.

Онипченко В.Г., Рожин А.О., Смирнов В.Э., Ахметжанова А.А., Елумеева Т.Г., Хубиева O.П., Дудова К.В., Судзиловская Н.А., Корнелиссен Х.Г. Cогласуются ли внутривидовая изменчивость и средневзвешенные значения признаков листа в сообществе (на примере альпийских растений)? Внутривидовое варьирование признаков, как правило, меньше, чем межвидовое, однако направления меж- и внутривидового варьирования по градиентам среды изучены недостаточно. Для 17 альпийских видов мы проверили гипотезу о том, что направление внутривидовой изменчивости по признакам листа между разными сообществами по градиенту среды последовательно совпадает со средневзвешенными значениями признаков в сообществах (CWM) по тому же градиенту. Мы выделили две группы признаков листа на основе выявленных связей с CWM и топографическими (глубина снежного покрова и время схода снега) градиентами. Для массы листа и его площади внутривидовое варьирование соответствует варьированию CWM среди сообществ. Удельная листовая поверхность, обводненность листа и его толщина внутри видов изменяются в соответствии с расположением сообществ на склоне (градиент времени снеготаяния). Эти результаты хорошо выражены для видов разнотравья, но в большинстве случаев не значимы для злаковых. Для площади листа мы показали противоположную реакцию этих двух групп (разнотравье и злаки) по градиенту снегонакопления. Площадь листа у видов разнотравья увеличивается, а злаков уменьшается при увеличении глубины снежного покрова. Таким образом, внутривидовое варьирование признаков по естественным градиентам не обязательно согласуется с изменчивостью межвидовой и варьированием на уровне сообществ.

Keywords: leaf functional traits, alpine plant communities, specific leaf area, community weighted mean, Caucasus, функциональные признаки листа, альпийские растительные сообщества, удельная листовая поверхность, взвешенное среднее сообщества, Кавказ

PDF       SUPPLEMENTARY MATERIALS



References

Akhmetzhanova, A.A., V.G. Onipchenko, M.Kh. El'kanova, A.V. Stogova & D.K. Tekeev 2012. Changes in ecologomorphological parameters of alpine plant leaves upon application of mineral nutrients. Biology Bulletin Review 2(1): 1-12. CrossRef

Andrade, B.O., G.E. Overbeck, G.E. Pilger, J-M. Hermann, T. Conradi, I.I. Boldrini & J. Kollmann 2014. Intraspecific trait variation and allocation strategies of calcareous grassland species: results from a restoration experiment. Basic and Applied Ecology 15(7):590-598. CrossRef

Albert, C.H. 2015. Intraspecific trait variability matters. Journal of Vegetation Science 26(1):7-8. CrossRef

Albert, C.H., W. Thuiller, N.G. Yoccoz, R. Douzet, S. Aubert & S. Lavorel 2010. A multi-trait approach reveals the structure and the relative importance of intra- vs. interspecific variability in plant traits. Functional Ecology 24(6):1192-1201. CrossRef

Anderegg, L.D.L., L.T. Berner, G. Badgley, M.L. Sethi, B.E. Law & J. HilleRisLambers 2018. Within species patterns challenge our understanding of the leaf economics spectrum. Ecology Letters 21(5):734-744. CrossRef

Auger, S & B. Shipley 2013. Inter-specific and intra-specific trait variation along short environmental gradients in an old-growth temperate forest. Journal of Vegetation Science 24(3):419-428. CrossRef

Bagousse-Pinguet, Y.L., F. de Bello, M. Vandewalle, J. Leps & M.T. Sykes 2014. Species richness of limestone grasslands increases with trait overlap : evidence from within- and between-species functional diversity partitioning. Journal of Ecology 102(2):466-474. CrossRef

Belyea, L.R. & J. Lancaster 1999. Assembly rules within a contingent ecology. Oikos 86(3):402-416. CrossRef

Carlson, B.Z., P. Choler, J. Renaud, J-P. Dedieu & W. Thuiller 2015. Modelling snow duration improves predictions of functional and taxonomic diversity for alpine plant communities. Annals of Botany 116(6):1023-1034. CrossRef

Borgy, B., C. Violle, P. Choler, P. Denelle, F. Munoz, J. Kattge, S. Lavorel et al. 2017. Plant community structure and nitrogen inputs modulate the climate signal on leaf traits. Global Ecology and Biogeography 26(10):1138-1152. CrossRef

Burns, J.H. & S.Y. Strauss 2012. Effects of competition on phylogenetic signal and phenotypic plasticity in plant functional traits. Ecology 93(8):S126-S137. CrossRef

Carlucci, M., V. Debastiani, V. Pillar & L. Duarte 2015. Between- and within-species trait variability and the assembly of sapling communities in forest patches. Journal of Vegetation Science 26(1):21-31. CrossRef

Choler, P. 2005. Consistent shifts in alpine plant traits along a mesotopographical gradient. Arctic, Antarctic, and Alpine Research 37(4):444-453. CrossRef

Cornelissen, J.H.C. 1999. A triangular relationship between leaf size and seed size among woody species: allometry, ontogeny, ecology and taxonomy. Oecologia 118(2):248-255. CrossRef

Cornelissen, J.H.C., P. Castro-Diez & A.L. Carnelli 1998. Variation in relative growth rate among woody species. In: Inherent variation in plant growth. Physiological Mechanisms and Ecological Consequenses (H. Lamberts, H. Poorter & M.M.I. Van Vuuren, eds), pp. 363-392, Backhuys, Leiden.

Cornelissen, J.H.C., S. Lavorel, E. Garnier, S. Diaz, N. Buchmann, D.E. Gurvich, P.B. Reich et al. 2003. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany 51(4):335-380. CrossRef

Cornwell, W.K. & D.D. Ackerly 2009. Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecological Monographs 79(1):109-126. CrossRef

de Bello, F., S. Lavorel, S. Lavergne, C.H. Albert, I. Boulangeat, F. Mazel & W. Thuiller 2013. Hierarchical effects of environmental filters on the functional structure of plant communities: a case study in the French Alps. Ecography 36(3):393-402. CrossRef

Donovan, L.A., H. Maherali, C.M. Caruso, H. Huber & H. de Kroon 2011. The evolution of the worldwide leaf economics spectrum. Trends in Ecology and Evolution 26(2): 88-95. CrossRef

Dwyer, J.M., R.J. Hobbs & M.M. Mayfield 2014. Specific leaf area responses to environmental gradients through space and time. Ecology 95(2):399-410. CrossRef

Elumeeva, T.G., V.G. Onipchenko, A.A. Akhmetzhanova, M.I. Makarov and J.A. Keuskamp 2018. Stabilization versus decomposition in alpine ecosystems of the Northwestern Caucasus: the results of tea bag burial experiment. Journal of Mountain Science 15(8):1633-1641. CrossRef

Fomin, S.V., V.G. Onipchenko & A.V. Sennov 1989. Feeding and digging activities of the pine vole Pitymys majori Thom. in alpine cenoses of the Northwestern Caucasus. Byulleten' Moskovskogo Obshchestva Ispytatelei Prirody Otdel Biologicheskii 94(3):6-13 (in Russian). [Фомин С.В., Онипченко В.Г., Сеннов А.В. 1989. Питание и роющая деятельность кустарниковой полевки (Pitymys majori Thos.) в альпийских сообществах северо-западного Кавказа // Бюллетень МОИП, отдел биологический. Т. 94, № 1. С. 6-13].

Garnier, E., J. Cortez, G. Billes, M-L. Navas, C. Roumet, M. Debussche, G. Laurent et al. 2004. Plant functional markers capture ecosystem properties during secondary succession. Ecology 85(9):2630-2637. CrossRef

Grime, J.P. 2006. Trait convergence and trait divergence in herbaceous plant communities: mechanisms and consequences. Journal of Vegetation Science 17(2):255-260. CrossRef

Grishina, L.A., V.G. Onipchenko, M.I. Makarov & V.A. Vanyasin 1993. Changes in properties of mountain-meadow alpine soils of the northwestern Caucasus under different ecological conditions. Eurasian Soil Science 25(9):1-12.

Gurevitch, J. & L.V. Hedges 1999. Statistical issues in ecological meta-analyses. Ecology 80(4):1142-1149 CrossRef

He, D., Y. Chen, K. Zhao, J.H.C. Cornelissen & C. Chu 2018. Intra- and interspecific trait variations reveal functional relationships between specific leaf area and soil niche within a subtropical forest. Annals of Botany 121(6): 1173-1182. CrossRef

Hedges, L.V. 1981. Distribution theory for Glass's estimator of effect size and related estimators. Journal of Educational and Behavioral Statistics 6(2):107-128. CrossRef

Hulshof, C.M., C. Violle, M.J. Spasojevic, B. McGill, E. Damschen, S. Harrison & B.J. Enquist 2013. Intra-specific and inter-specific variation in specific leaf area reveal the importance of abiotic and biotic drivers of species diversity across elevation and latitude. Journal of Vegetation Science 24(5):921-931. CrossRef

Jung, V., C.H. Albert, C. Violle, G. Kunstler, G. Loucougaray & T. Spiegelberger 2014. Intraspecific trait variability mediates the response of subalpine grassland communities to extreme drought events. Journal of Ecology 102(1):45-53. CrossRef

Jung, V., C. Violle, C. Mondy, L. Hoffmann & S. Muller 2010. Intraspecific variability and trait-based community assembly. Journal of Ecology 98(5):1134-1140. CrossRef

Kamiyama, C., M. Katabuchi, T. Sasaki, M. Shimazaki, T. Nakashizuka & K. Hikosaka 2014. Leaf-trait responses to environmental gradients in moorland communities: contribution of intraspecific variation, species replacement and functional group replacement. Ecological Research 29(4):607-617. CrossRef

Kattge, J., S. Diaz, S. Lavorel, I.C. Prentice, P. Leadley, G. Bönisch, E. Garnier et al. 2011. TRY - a global database of plant traits. Global Change Biology 17(9):2905-2935. CrossRef

Kichenin, E., D.A. Wardle, D.A. Peltzer, C.W. Morse, G.T. Freschet 2013. Contrasting effects of plant interand intraspecific variation on community-level trait measures along an environmental gradients. Functional Ecology 27(5):1254-1261. CrossRef

Körner, C. 2003. Alpine plant life: functional plant ecology of high mountain ecosystems. 2nd ed. Springer, Berlin, 345 pp. CrossRef

Kudo, G. & K. Ito 1992. Plant distribution in relation to the length of the growing season in a snow-bed in the Taisetsu Mountains, Northern Japan. Vegetatio 98(2):165-174. CrossRef

Lajoie, G. & M. Vellend 2015. Understanding context dependence in the contribution of intraspecific variation to community trait-environment matching. Ecology 96(11): 2912-2922. CrossRef

Lavorel, S., K. Grigulis, S. McIntyre, N.S.G. Williams, D. Garden, J. Dorrough, S. Berman et al. 2008. Assessing functional diversity in the field-methodology matters! Functional Ecology 22(1):134-147.

Messier, J., B.J. McGill, B.J. Enquist & M.J. Lechowicz 2017. Trait variation and integration across scales: is the leaf economic spectrum present at local scales? Ecography 40(6):685-697. CrossRef

Metcalf, C.J.E., M. Rees & J.M. Alexander 2006. Growthsurvival trade-offs and allometrics in rosette-forming perennials. Functional Ecology 20(2):217-225. CrossRef

Milla, R, P.B. Reich, Ü. Niinemets & P. Castro Diez 2008. Environmental and developmental controls on specific leaf area are little modified by leaf allometry. Functional Ecology 22(4):565-576. CrossRef

Mitchell, R.M. & J.D. Bakker 2014. Quantifying and comparing intraspecific functional trait variability: a case study with Hypochaeris radicata. Functional Ecology 28(1):258-269. CrossRef

Mouillot, D., N.W.H. Mason & J.B. Wilson 2007. Is the abundance of species determined by their functional traits? A new method with a test using plant communities. Oecologia 152(4):729-737. CrossRef

Niinemets, U. 2004. Adaptive adjustments to light in foliage and whole-plant characteristics depend on relative age in the perennial herb Leontodon hispidus. New Phytologist 162(3): 683-696. CrossRef

Onipchenko, V.G. 1985. Structure, phytomass and production of alpine lichen heaths. Byulleten' Moskovskogo Obshchestva Ispytatelei Prirody. Otdel Biologicheskii 90(1):59-66 (in Russian). [Онипченко В.Г. 1985. Структура, фитомасса и продуктивность альпийских лишайниковых пустошей // Бюллетень МОИП, отдел биологический. Т. 90, № 1. С. 59-66].

Onipchenko, V.G. 1990. Phytomass of the alpine communities in the Northwestern Caucasus, Russian SFSR USSR. Byulleten' Moskovskogo Obshchestva Ispytatelei Prirody. Otdel Biologicheskii 95 (6):52-62 (in Russian). [Онипченко В.Г. 1990. Фитомасса альпийских сообществ северо- западного Кавказа // Бюллетень МОИП, отдел биологический. Т. 95, № 6. С. 52-62].

Onipchenko, V.G. 1994. The structure and dynamics of alpine plant communities in the Teberda Reserve, the Northwestern Caucasus. Oecologia Montana 3(1-2):40-50.

Onipchenko, V.G. 2002. Alpine vegetation of the Teberda Reserve, the Northwest Caucasus. Veröffentlichungen des Geobotanischen Institutes der ETH, Stiftung Rübel, Zürich, 168 pp.

Onipchenko, V.G. ed. 2004. Alpine ecosystems in the Northwest Caucasus. Kluwer, Dordrecht, 410 pp. CrossRef

Onipchenko, V.G. & G.V. Semenova 1995. Comparative analysis of the floristic richness of alpine communities in the Caucasus and the Central Alps. Journal of Vegetation Science 6(2):299-304. CrossRef

Onipchenko, V.G., A.S. Zernov & F.M. Vorob'eva 2011. Vascular plants of Teberda Reserve annotated list of species. 2nd ed. MAKS Press, Moscow, 144 pp. (in Russian). [Онипченко В.Г., Зернов А.С., Воробьева Ф.М. 2011. Сосудистые растения Тебердинского заповедника (аннотированный список видов). М.: МАКС-Пресс. 144 с.].

Ordonez, J.C., P.M. van Bodegom, J.-P.M. Witte, R.P. Bartholomeus, H.F. van Dobben & Aerts 2010. Leaf habit and woodiness regulate different leaf economy traits at a given nutrient supply. Ecology 91(11):3218-3228. CrossRef

Pakeman, R.J. 2013. Intra-specific leaf trait variation: management and fertility matter more than the climate at continental scales. Folia Geobotanica 48(3):355-371. CrossRef

Pierce, S., D. Negreiros, B.E.L. Cerabolini, J. Kattge, S. Diaz, M. Kleyer, B. Shipley et al. 2017. A global method for calculating plant CSR ecological strategies applied across biomes world-wide. Functional Ecology 31(2):444-457. CrossRef

Pokarzhevskaya, G.A. 1998. Influence of the dominant grass Festuca varia Haenke on the spatial pattern of alpine grasslands in the northwestern Caucasus, Russia. Arctic and Alpine Research 30(1):11-18. CrossRef

Poorter, H. & C. Remkes 1990. Leaf area ratio and net assimilation rate of 24 species differing in relative growth rate. Oecologia 83(4):553-559. CrossRef

Poorter, H. & A. van der Werf 1998. Is inherent variation in RGR determined by LAR at low irradiance and by NAR at high irradiance? A review of herbaceous species. In: Inherent variation in plant growth. Physiological Mechanisms and Ecological Consequenses. (H. Lamberts, H. Poorter & M.M.I. Van Vuuren, eds), pp 309-336. Backhuys, Leiden.

Poorter, H., U. Niinemets, L. Poorter, I.J. Wright & R. Villar 2009. Causes and consequences of variation in leaf mass per area LMA: a meta-analysis. New Phytologist 182(3): 565-588. CrossRef

R Core Team 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org.

Read, Q.D., L.C. Moorhead, N.G. Swenson, J.K. Bailey & N.J. Sanders 2014. Convergent effects of elevation on functional traits within and among species. Functional Ecology 28(1):37-45. CrossRef

Rees, M., C.P. Osborne, F.I. Woodward, S.P. Hulme, L.A. Turnbull & S.H. Taylor 2010. Partitioning the components of relative growth rate: how important is plant size variation? American Naturalist 176(6):E152-E161. CrossRef

Scheepens, J.F., E.S. Frei & J. Stocklin 2010. Genotypic and environmental variation in specific leaf area in a widespread alpine plant after transplantation to different altitudes. Oecologia 164(1):141-150. CrossRef

Shidakov, I.I. & V.G. Onipchenko 2007. Comparative analysis of alpine plant leaf traits in the Teberda Reserve. Byulleten' Moskovskogo Obshchestva Ispytatelei Prirody, Otdel Biologicheskii 112(4):42-50 (in Russian). [Шидаков И.И., Онипченко В.Г. 2007. Сравнение параметров листового аппарата растений альпийского пояса Тебердинского заповедника // Бюллетень МОИП, отдел биологический. Т. 11, № 4. С. 42-50].

Shipley, B. 2006. Net assimilation rate, specific leaf area and leaf mass ratio: which is most closely correlated with relative growth rate? A meta-analysis. Functional Ecology 20(4):565-574. CrossRef

Siefert, A. 2012. Incorporating intraspecific variation in tests of trait-based community assembly. Oecologia 170(3): 767-775. CrossRef

Siefert, A. & M.E. Ritchie 2016. Intraspecific trait variation drives functional responses of old-field plant communities to nutrient enrichment. Oecologia 181(1):245-255. CrossRef

Siefert, A., C. Violle, L. Chalmandrier, C.H. Albert, A. Taudiere, A. Fajardo, L.W. Aarssen, C. Baraloto et al. 2015. A global meta-analysis of the relative extent of intraspecific trait variation in plant communities. Ecology Letters 18(12):1406-1419. CrossRef

Sokal, R.R. & F.J. Rohlf 2012. Biometry: the principles and practice of statistics in biological research. 4th ed. WH Freeman, New York, 915 pp.

Suding, K.N. & L.J. Goldstein 2008. Testing the Holy Grail framework: using functional traits to predict ecosystem change. New Phytologist 180(3):559-562. CrossRef

Venn, S.E., K. Green, C.M. Pickering & J.W. Morgan 2011. Using plant functional traits to explain community composition across a strong environmental filter in Australian alpine snowpatches. Plant Ecology 212(9):1491-1499. CrossRef

White, I.R. & J. Thomas 2005. Standardized mean differences in individually-randomized and cluster-randomized trials, with applications to meta-analysis. Clinical Trials 2(2): 141-151. CrossRef

Yang, X.J., Z.Y. Huang, K.L. Zhang & J.H.C. Cornelissen 2015. C:N:P stoichiometry of Artemisia species and close relatives across northern China: unraveling effects of climate, soil and taxonomy. Journal of Ecology 103(4):1020-1031. CrossRef

Zakharov, A.A., M.A. Gerasimova & V.G. Onipchenko 2002. Relationship between plant distribution and snow depth in an alpine snowbed community. Byulleten' Moskovskogo Obshchestva Ispytatelei Prirody. Otdel Biologicheskii 107(5): 80-83 (in Russian).[Захаров А.А., Герасимова М.А., Онипченко В.Г. Зависимость распределения растений альпийских ковров от мощности снежного покрова // Бюллетень МОИП, отдел биологический. Т.107, №5. С. 80-83].





© 2016-2020 Botanica Pacifica