
Sains Malaysiana 50(7)(2021): 2085-2094
http://doi.org/10.17576/jsm-2021-5007-22

Fast Improvised Influential Distance for the Identification of Influential 
Observations in Multiple Linear Regression

(Penambahbaikan Pantas Jarak Pengaruh bagi Pengecaman Cerapan Berpengaruh dalam Regresi Linear Berganda)

HABSHAH MIDI*, MUHAMMAD SANI, SHELAN SAIED ISMAEEL & JAYANTHI ARASAN

ABSTRACT

Influential observations (IO) are those observations that are responsible for misleading conclusions about the fitting 
of a multiple linear regression model. The existing IO identification methods such as influential distance (ID) is not 
very successful in detecting IO. It is suspected that the ID employed inefficient method with long computational 
running time for the identification of the suspected IO at the initial step. Moreover, this method declares good leverage 
observations as IO, resulting in misleading conclusion. In this paper, we proposed fast improvised influential distance 
(FIID) that can successfully identify IO, good leverage observations, and regular observations with shorter computational 
running time. Monte Carlo simulation study and real data examples show that the FIID correctly identify genuine IO in 
multiple linear regression model with no masking and a negligible swamping rate. 
Keywords: Bad leverage point; good leverage point; influential distance; influential observations

ABSTRAK

Cerapan berpengaruh (IO) adalah cerapan yang bertanggungjawab ke atas kesimpulan yang mengelirukan bagi 
penyesuaian model regresi linear berganda. Kaedah pengecaman IO sedia ada seperti jarak berpengaruh (ID) 
tidak begitu berjaya untuk mengesan IO. Kami mengesyaki bahawa ID menggunakan kaedah yang kurang cekap 
dengan masa pengiraan yang panjang pada langkah awal bagi pengecaman cerapan IO. Tambahan pula, kaedah ini 
menunjukkan cerapan tuasan baik sebagai IO yang mengelirukan keputusan kajian. Dalam kertas ini, kami mencadangkan 
penambahbaikan jarak berpengaruh pantas (FIID) yang boleh mengecam IO, cerapan tuasan yang baik dan cerapan 
biasa dengan jayanya dengan masa pengiraan yang pantas. Kajian Monte Carlo simulasi dan contoh data sebenar 
menunjukkan bahawa FIID mengecam IO dalam model linear regresi berganda dengan betul tanpa penyorokan dan 
kadar limpahan yang sangat kecil.
Kata kunci: Cerapan berpengaruh; jarak berpengaruh; titik tuasan buruk; titik tuasan tinggi baik 

INTRODUCTION

The existence of IO is inevitable in real data sets (Hampel 
et al. 2011). In the presence of IO the ordinary least squares 
(OLS) estimates become bias and loose the property of best 
linear unbiased estimates (BLUE). Belsley et al. (2004) 
stated that IO are those observations which either alone or 
together with several other observations have larger impact 
on the computed values of various estimates. Chatterjee 
and Hadi (1986) highlighted that high leverage points 
(outlying observations in X direction) are not always 

influential, and influential observations are not necessarily 
high leverage points. Since influential observations have 
a great influence on the values of various estimates, it 
is therefore very crucial to identify them and to take 
them into consideration when interpreting the results. 
Rousseeuw and Leroy (1987) noted that both the dependent 
and independent variables need to be considered when 
developing technique for identification of IOs. Ignoring or 
considering only one of them, may fail to identify multiple 
IOs (Rahmatullah Imon 2002; Rousseeuw & Leroy 1987). 
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Studentized residuals, Cook’s distance and difference 
in fitted values (DFFITS) are the commonly used methods 
for identifying influential observations. Welsch (1980) 
recommended DFFITS as it combines both the leverage 
and the residual components. Even though DFFITS is 
successful in detecting single influential observation, 
it is not effective enough when a group of influential 
observations are present in a data (Rousseeuw & Leroy 
1987).

Rahmatullah Imon (2005) developed the generalized 
version of DFFITS, denoted by GDFF which combined 
both the group deleted leverage and residual components. 
Although the GDFF can detect multiple IOs, it is not 
effective enough in identifying the exact number of IOs. 
It has a tendency of detecting lesser IOs as it should be 
and produce several masking of IOs. This is probably 
due to the determination of the initial basic subset of the 
GDFF which is not adequately effective in classifying the 
deletion and the remaining groups. Rahmatullah Imon’s 
GDFF diagnostic measure uses the generalized potentials 
(Hawkins et al. 1984).

Recently, Nurunnabi et al. (2016) proposed new 
identification measure for IOs named influential distance 
(ID) based on group detection technique for the 
identification of multiple IOs. The technique has three 
major stages. The first stage identifies the suspected 
unusual observations using a method that we call group 
union method (GUM), the second stage identifies high 
leverage points (HLPs) and vertical outliers (VOs), and the 
third stage computes the ID using Mahalanobis distance 
(MD). The ID method is very good for the identification of 
IOs. However, the shortcoming of ID is that in the first 
stage it employed the union of five different detection 
methods (standardized studentized residual, standardized 
least median of squares (LMS) residuals, hat matrix, Cooks 
distance and difference in fits) for the identification of the 
suspected unusual observation. Some of these detection 
methods have been reported to have high rate of masking 
and swamping (Habshah et al. 2009). According to 
Hadi (1992), the choice of the initial suspected unusual 
observations is very important as it may lead to correct 
detection of the final IOs. Moreover, the computation of 
GUM method takes a lot of computer times. In addition, 
the ID method declared good leverage points as IOs and 
also has high rate of masking and swamping. Therefore, 
these shortcomings motivated us to propose a new 
version of ID which has fast computer running time and 
able to successfully differentiate between the regular 
observations, good leverage points and IOs.

Next section introduced the influential distance 
methods. The proposed fast improvised influential 
distance is described in the following section. The 
simulation study and real data examples are presented 
in the subsequent section. Last section presents the 
conclusion of the study. 

INFLUENTIAL DISTANCE 
Nurunnabi et al. (2016) proposed a technique for 
identifying multiple IOs called influential distance 
denoted by ID. The technique uses group deletion based-
approach which is designed for the classification and 
identification of multiple HLPs, outliers, and IOs. The 
approach of group deletion is to extract clean subset of 
the data which is free from unusual observations and 
then test the outlyingness of the remaining data points 
relative to the clean subset. The way of determining the 
clean subset R with size (n-d) is by obtaining the deletion 
group D (group of suspected unusual cases of size d) 
based on GUM (union of the detected observation based 
on standardized studentized residual and/or standardized 
LMS residuals, leverage values or hat matrix, CDs, and 
DFFITS). For more details of these methods, one can refer 
to Atkinson (1986), Atkinson and Riani (2000), Belsley 
et al. (2004), Chatterjee and Hadi (2006), Cook (1998), 
Hadi and Simonoff (1993), Nurunnabi et al. (2016) and 
Rahmatullah Imon (2005). 

The ID is then computed using MD based on the 
generalized studentized residual (GSR) and generalized 
leverage values (GLV). The algorithm for the computation 
of ID is summarized as follows:
Step 1  Obtain the group of suspected unusual 
observations to be deleted using GUM and index them by 
‘D’, and index the remaining (n-d) observations by ‘R’. 
Partition matrices of X and Y for both clean ‘R’ group 
and suspected unusual ‘D’ group as follows:

                                  ,    

Step 2 Fit the linear model of the clean ‘R’ group and 
obtain the parameter estimate 𝛽̂𝛽𝑅𝑅 = (𝑋𝑋𝑅𝑅𝑇𝑇𝑋𝑋𝑅𝑅)−1𝑋𝑋𝑅𝑅𝑇𝑇𝑌𝑌𝑅𝑅 

 

 given as,

Step 3 Compute the GSR (ri
*) for the identification of 

multiple outliers as follows:

𝑋𝑋 = [𝑋𝑋𝑅𝑅𝑋𝑋𝐷𝐷],    𝑌𝑌 = [𝑌𝑌𝑅𝑅𝑌𝑌𝐷𝐷] 

 

𝛽̂𝛽𝑅𝑅 = (𝑋𝑋𝑅𝑅𝑇𝑇𝑋𝑋𝑅𝑅)−1𝑋𝑋𝑅𝑅𝑇𝑇𝑌𝑌𝑅𝑅 
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where ri(R) = Yi - Xi 𝛽̂𝛽𝑅𝑅 = (𝑋𝑋𝑅𝑅𝑇𝑇𝑋𝑋𝑅𝑅)−1𝑋𝑋𝑅𝑅𝑇𝑇𝑌𝑌𝑅𝑅 

 

, hii(R) = xi
T (XR

T XR )-1 xi and 

𝑟𝑟𝑖𝑖∗ =

{ 
 
  

𝑟𝑟𝑖𝑖(𝑅𝑅)
𝜎̂𝜎𝑅𝑅−𝑖𝑖√1 − ℎ𝑖𝑖𝑖𝑖(𝑅𝑅)

      𝑓𝑓𝑓𝑓𝑓𝑓    𝑖𝑖 ∈ 𝑅𝑅,

𝑟𝑟𝑖𝑖(𝑅𝑅)
𝜎̂𝜎𝑅𝑅√1 + ℎ𝑖𝑖𝑖𝑖(𝑅𝑅)

           𝑓𝑓𝑓𝑓𝑓𝑓    𝑖𝑖 ∈ 𝐷𝐷,
 

 

    is 
the standard error of the residual. The cutoff point for GSR 
is given by,

where MAD(ri
*) = median{|ri

*- median(ri
* )|}/0.6745. Any 

observation corresponds to ri
* that exceed the CP(ri

*)  is 
considered as outlier.
Step 4 Compute the GLV (hii

*) for the identification of 
multiple HLPs as follows:

The cutoff point for GLV is given by,

CP (ℎ𝑖𝑖𝑖𝑖∗ =

{ 
 
  

ℎ𝑖𝑖𝑖𝑖(𝑅𝑅)
1 − ℎ𝑖𝑖𝑖𝑖(𝑅𝑅)

          𝑓𝑓𝑓𝑓𝑓𝑓    𝑖𝑖 ∈ 𝑅𝑅,

ℎ𝑖𝑖𝑖𝑖(𝑅𝑅)
1 + ℎ𝑖𝑖𝑖𝑖(𝑅𝑅)

           𝑓𝑓𝑓𝑓𝑓𝑓     𝑖𝑖 ∈ 𝐷𝐷,
 

 

) = median (ℎ𝑖𝑖𝑖𝑖∗ =

{ 
 
  

ℎ𝑖𝑖𝑖𝑖(𝑅𝑅)
1 − ℎ𝑖𝑖𝑖𝑖(𝑅𝑅)

          𝑓𝑓𝑓𝑓𝑓𝑓    𝑖𝑖 ∈ 𝑅𝑅,

ℎ𝑖𝑖𝑖𝑖(𝑅𝑅)
1 + ℎ𝑖𝑖𝑖𝑖(𝑅𝑅)

           𝑓𝑓𝑓𝑓𝑓𝑓     𝑖𝑖 ∈ 𝐷𝐷,
 

 

) + 3MAD(ℎ𝑖𝑖𝑖𝑖∗ =

{ 
 
  

ℎ𝑖𝑖𝑖𝑖(𝑅𝑅)
1 − ℎ𝑖𝑖𝑖𝑖(𝑅𝑅)

          𝑓𝑓𝑓𝑓𝑓𝑓    𝑖𝑖 ∈ 𝑅𝑅,

ℎ𝑖𝑖𝑖𝑖(𝑅𝑅)
1 + ℎ𝑖𝑖𝑖𝑖(𝑅𝑅)

           𝑓𝑓𝑓𝑓𝑓𝑓     𝑖𝑖 ∈ 𝐷𝐷,
 

 

)

For any ℎ𝑖𝑖𝑖𝑖∗ =

{ 
 
  

ℎ𝑖𝑖𝑖𝑖(𝑅𝑅)
1 − ℎ𝑖𝑖𝑖𝑖(𝑅𝑅)

          𝑓𝑓𝑓𝑓𝑓𝑓    𝑖𝑖 ∈ 𝑅𝑅,

ℎ𝑖𝑖𝑖𝑖(𝑅𝑅)
1 + ℎ𝑖𝑖𝑖𝑖(𝑅𝑅)

           𝑓𝑓𝑓𝑓𝑓𝑓     𝑖𝑖 ∈ 𝐷𝐷,
 

 

 observation that exceed the CP(ℎ𝑖𝑖𝑖𝑖∗ =

{ 
 
  

ℎ𝑖𝑖𝑖𝑖(𝑅𝑅)
1 − ℎ𝑖𝑖𝑖𝑖(𝑅𝑅)

          𝑓𝑓𝑓𝑓𝑓𝑓    𝑖𝑖 ∈ 𝑅𝑅,

ℎ𝑖𝑖𝑖𝑖(𝑅𝑅)
1 + ℎ𝑖𝑖𝑖𝑖(𝑅𝑅)

           𝑓𝑓𝑓𝑓𝑓𝑓     𝑖𝑖 ∈ 𝐷𝐷,
 

 

) is 
considered as HLPs.
Step 5 Use Steps (3) and (4) to compute the ID based on 
MD for a two-column matrix of GSR in the first column 
and GLV in the second column. This matrix is denoted by 
G. The ID is now defined as,

                                             

where where 𝐺̅𝐺𝑅𝑅 and Σ𝐺𝐺𝑅𝑅−1  and where 𝐺̅𝐺𝑅𝑅 and Σ𝐺𝐺𝑅𝑅−1  are the mean and inverse covariance 
matrix of the R group of G matrix, respectively. 
Nurunnabi et al. (2016) proposed a cutoff point for ID 
given by,

where p = 2 (number of variable in G matrix); n is 
the number of observations; and α is the level of 
significance (we use α = 0.025).
Step 6 Plot a graph of Index versus ID. Any value of ID 
exceeds the CPID is declared as IO.
Step 7 The IO identified in Step (6) is shown clearly in the 
‘LRI’ plot by plotting the ID in the GSR-GLV plot.

PROPOSED FAST IMPROVISED INFLUENTIAL DISTANCE 

In this section, we proposed an improvised diagnostic 
method for identifying and classifying multiple IOs named 
fast improvised influential distance denoted by FIID, by 
adopting the ID method of Nurunnabi et al. (2016). As 
already mentioned, the GUM of Nurunnabi et al. (2016) 
that involves five different outlying observations detection 
methods for the identification of suspected unusual 
observations take a lot of computer times. Moreover, 
the ID has high rate of swamping and masking effect 
and also not efficient in identifying IOs because good 
high leverage points also identified as IOs. As such, we 
attempt to improvise their method by using more efficient 
methods to identify suspected unusual observations with 
less computer running time and also establish reliable 
method of classification of IOs. In doing so, we replace the 
GUM with LMS-RMDISE (the union of standardized LMS 
and robust Mahalanobis distance (RMD) based on index 
set equality (ISE)). The RMDISE is constructed using ISE 
of Lim and Habshah (2016) which is expected not only 
capable of reducing the effect of masking and swamping 
but also to have lesser computer running time. The ISE is 
reported to have very fast computer running time due to 
the simplicity of its algorithm. It is important to note that 
the ID method identifies IOs with longer computational 
running time and fail to separate the good leverage from 
IOs. It has been reported that some unusual observations 
may be influential but not in a negative way (Chatterjee 
& Hadi 1986; Mohammed et al. 2015). Therefore, 
identifying the good leverage is very important as they 
have no effect, instead they may contribute to the precision 
of the estimate. The good leverage point should not be 
considered as IOs. We employed the idea of Mohammed et 
al. (2015) for HLPs classification. Our proposed FIID only 
considered bad HLPs and vertical outliers as IOs. Firstly, 
we have to establish a classification plot which consists of 
six portions indicating regular observations (ROs), good 
leverage observations (GLOs) and IOs.

The algorithm for the detection and classification 
of observations into ROs, GLOs and IOs is summarized 
as follows:
Step 1 The suspected vertical outliers are detected using 
the LMS denoted as S set.
Step 2 Employ the RMDISE to identify HLPs denoted as 
H set. 
Step 3 The union of H set and S set will be considered as 
the group of suspected unusual observations and index 
them by ‘D’, and index the remaining (n-d) observations 
by ‘R’. Partition matrices of X and Y for both clean ‘R’ 
group and suspected unusual ‘D’ group as follows:

𝑟𝑟𝑖𝑖∗ =

{ 
 
  

𝑟𝑟𝑖𝑖(𝑅𝑅)
𝜎̂𝜎𝑅𝑅−𝑖𝑖√1 − ℎ𝑖𝑖𝑖𝑖(𝑅𝑅)

      𝑓𝑓𝑓𝑓𝑓𝑓    𝑖𝑖 ∈ 𝑅𝑅,

𝑟𝑟𝑖𝑖(𝑅𝑅)
𝜎̂𝜎𝑅𝑅√1 + ℎ𝑖𝑖𝑖𝑖(𝑅𝑅)

           𝑓𝑓𝑓𝑓𝑓𝑓    𝑖𝑖 ∈ 𝐷𝐷,
 

 

𝐶𝐶𝐶𝐶(𝑓𝑓𝑟𝑟𝑖𝑖∗) = median(𝑓𝑓𝑓𝑓𝑖𝑖∗) ± 3MAD(𝑓𝑓𝑟𝑟𝑖𝑖∗)  

 

ℎ𝑖𝑖𝑖𝑖∗ =

{ 
 
  

ℎ𝑖𝑖𝑖𝑖(𝑅𝑅)
1 − ℎ𝑖𝑖𝑖𝑖(𝑅𝑅)

          𝑓𝑓𝑓𝑓𝑓𝑓    𝑖𝑖 ∈ 𝑅𝑅,

ℎ𝑖𝑖𝑖𝑖(𝑅𝑅)
1 + ℎ𝑖𝑖𝑖𝑖(𝑅𝑅)

           𝑓𝑓𝑓𝑓𝑓𝑓     𝑖𝑖 ∈ 𝐷𝐷,
 

 

𝐼𝐼𝐼𝐼𝑖𝑖 = √(𝐺𝐺𝑖𝑖 − 𝐺̅𝐺𝑅𝑅)𝑇𝑇Σ𝐺𝐺𝑅𝑅−1(𝐺𝐺𝑖𝑖 − 𝐺̅𝐺𝑅𝑅),             𝑖𝑖 = 1,2, … , 𝑛𝑛, 

 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = √(𝑛𝑛 − 1)𝑝𝑝
(𝑛𝑛 − 𝑝𝑝) 𝐹𝐹𝛼𝛼(𝑝𝑝,𝑛𝑛−𝑝𝑝),        𝑖𝑖 = 1,2, … , 𝑛𝑛, 

 

𝐶𝐶𝐶𝐶(𝑓𝑓𝑟𝑟𝑖𝑖∗) = median(𝑓𝑓𝑓𝑓𝑖𝑖∗) ± 3MAD(𝑓𝑓𝑟𝑟𝑖𝑖∗)  

 

𝐶𝐶𝐶𝐶(𝑓𝑓𝑟𝑟𝑖𝑖∗) = median(𝑓𝑓𝑓𝑓𝑖𝑖∗) ± 3MAD(𝑓𝑓𝑟𝑟𝑖𝑖∗)  

 

𝐶𝐶𝐶𝐶(𝑓𝑓𝑟𝑟𝑖𝑖∗) = median(𝑓𝑓𝑓𝑓𝑖𝑖∗) ± 3MAD(𝑓𝑓𝑟𝑟𝑖𝑖∗)  
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                                        ,    

Step 4 Fit the linear model of the clean R group and 
obtain the parameter estimate 𝛽̂𝛽𝑅𝑅 = (𝑋𝑋𝑅𝑅𝑇𝑇𝑋𝑋𝑅𝑅)−1𝑋𝑋𝑅𝑅𝑇𝑇𝑌𝑌𝑅𝑅 

 

 given as,

Step 5 Compute the fast generalized studentized residual 
(FGSR) denoted by fri

* for the identification of multiple 
outliers as follows:

where ri(R) = Yi - Xi 𝛽̂𝛽𝑅𝑅 = (𝑋𝑋𝑅𝑅𝑇𝑇𝑋𝑋𝑅𝑅)−1𝑋𝑋𝑅𝑅𝑇𝑇𝑌𝑌𝑅𝑅 

 

(R), hii(R) = xi
T (XR

T XR)-1 xi and  

𝑟𝑟𝑖𝑖∗ =

{ 
 
  

𝑟𝑟𝑖𝑖(𝑅𝑅)
𝜎̂𝜎𝑅𝑅−𝑖𝑖√1 − ℎ𝑖𝑖𝑖𝑖(𝑅𝑅)

      𝑓𝑓𝑓𝑓𝑓𝑓    𝑖𝑖 ∈ 𝑅𝑅,

𝑟𝑟𝑖𝑖(𝑅𝑅)
𝜎̂𝜎𝑅𝑅√1 + ℎ𝑖𝑖𝑖𝑖(𝑅𝑅)

           𝑓𝑓𝑓𝑓𝑓𝑓    𝑖𝑖 ∈ 𝐷𝐷,
 

 

 is the 
standard error of the residual. The cutoff point for FGSR 
is given by,

where MAD(fri
*) = median{| fri

* - median (fri
*)|}/0.6745. 

Any observation fri
* that exceed the CP(fri

*)  is considered 
as outlier.
Step 6 Compute the fast generalized leverage values  
(FGLV) denoted by fℎ𝑖𝑖𝑖𝑖∗ =

{ 
 
  

ℎ𝑖𝑖𝑖𝑖(𝑅𝑅)
1 − ℎ𝑖𝑖𝑖𝑖(𝑅𝑅)

          𝑓𝑓𝑓𝑓𝑓𝑓    𝑖𝑖 ∈ 𝑅𝑅,

ℎ𝑖𝑖𝑖𝑖(𝑅𝑅)
1 + ℎ𝑖𝑖𝑖𝑖(𝑅𝑅)

           𝑓𝑓𝑓𝑓𝑓𝑓     𝑖𝑖 ∈ 𝐷𝐷,
 

 

 for the identification of multiple 
HLPs as follows:

The cutoff point for fℎ𝑖𝑖𝑖𝑖∗ =

{ 
 
  

ℎ𝑖𝑖𝑖𝑖(𝑅𝑅)
1 − ℎ𝑖𝑖𝑖𝑖(𝑅𝑅)

          𝑓𝑓𝑓𝑓𝑓𝑓    𝑖𝑖 ∈ 𝑅𝑅,

ℎ𝑖𝑖𝑖𝑖(𝑅𝑅)
1 + ℎ𝑖𝑖𝑖𝑖(𝑅𝑅)

           𝑓𝑓𝑓𝑓𝑓𝑓     𝑖𝑖 ∈ 𝐷𝐷,
 

 

 is given by,

For any fℎ𝑖𝑖𝑖𝑖∗ =

{ 
 
  

ℎ𝑖𝑖𝑖𝑖(𝑅𝑅)
1 − ℎ𝑖𝑖𝑖𝑖(𝑅𝑅)

          𝑓𝑓𝑓𝑓𝑓𝑓    𝑖𝑖 ∈ 𝑅𝑅,

ℎ𝑖𝑖𝑖𝑖(𝑅𝑅)
1 + ℎ𝑖𝑖𝑖𝑖(𝑅𝑅)

           𝑓𝑓𝑓𝑓𝑓𝑓     𝑖𝑖 ∈ 𝐷𝐷,
 

 

 observations that exceed the CP(fℎ𝑖𝑖𝑖𝑖∗ =

{ 
 
  

ℎ𝑖𝑖𝑖𝑖(𝑅𝑅)
1 − ℎ𝑖𝑖𝑖𝑖(𝑅𝑅)

          𝑓𝑓𝑓𝑓𝑓𝑓    𝑖𝑖 ∈ 𝑅𝑅,

ℎ𝑖𝑖𝑖𝑖(𝑅𝑅)
1 + ℎ𝑖𝑖𝑖𝑖(𝑅𝑅)

           𝑓𝑓𝑓𝑓𝑓𝑓     𝑖𝑖 ∈ 𝐷𝐷,
 

 

) is 
considered as HLPs.
Step 7 The fast-influential distance (FIDi

*) is formulated 
by formulating MD for a two-column matrix of FGSR 
in the first column and FGLV in the second column. This 

matrix is denoted by φ. The FIDi
* is now defined as,

           

where 𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖∗ = √(𝜑𝜑𝑖𝑖 − 𝜑̅𝜑𝑅𝑅)𝑇𝑇Σ𝜑𝜑𝑅𝑅
−1(𝜑𝜑𝑖𝑖 − 𝜑̅𝜑𝑅𝑅),             𝑖𝑖 = 1,2, … , 𝑛𝑛, 

 

 and 𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖∗ = √(𝜑𝜑𝑖𝑖 − 𝜑̅𝜑𝑅𝑅)𝑇𝑇Σ𝜑𝜑𝑅𝑅
−1(𝜑𝜑𝑖𝑖 − 𝜑̅𝜑𝑅𝑅),             𝑖𝑖 = 1,2, … , 𝑛𝑛, 

 

 are the mean and inverse covariance 
matrix of the R group of φ matrix, respectively. The cutoff 
point for FIDi

* is given by,

where p = 2 (number of variable in φ matrix); n is the 
number of observations; and α is the level of significance 
(we use α = 0.025). It is important to note that Nurunnabi 
et al. (2016) procedure declared any observation that 
correspond to ID larger than CPID as IO. The IO is 
confirmed by plotting ID on the plot of FGSR versus 
FGLV and sketch the confidence bound of each given 
by CPFGSR and CPFGLV, respectively. Any observation falls 
outside the confidence bound declared as IO. By doing so, 
some good observations also declared as HLPs. This is 
the main weakness of Nurunnabi et al. (2016) detection 
of IOs in addition of taking longer computational running 
time. Therefore, relying on the ID or FID will lead to 
inaccurate identification of IOs. As such, we adopt the 
procedure given by Mohammed et al. (2015), and classify 
observations as follows:
An observation is declared as RO if; |FGSR| ≤ CPFGSR and 
|FGLV| ≤ CPFGLV 
An observation is declared GLO if; |FGSR| ≤ CPFGSR and 
|FGLV| > CPFGLV  
An observation is declared as IO if; |FGSR| > CPFGSR and 
|FGLV| < CPFGLV  
An observation is declared as IO if; |FGSR| > CPFGSR and 
|FGLV| > CPFGLV  
 

With this additional step, IO is correctly identified 
whereby good leverage observations are not considered 
as IO, in contrast to Nurunnabi et al. (2016) procedure.       

Subsequently, the proposed FIID is formulated in 
Figure 1, whereby the IOs are clearly separated from the 
regular and good leverage points.

𝑋𝑋 = [𝑋𝑋𝑅𝑅𝑋𝑋𝐷𝐷],    𝑌𝑌 = [𝑌𝑌𝑅𝑅𝑌𝑌𝐷𝐷] 

 

𝛽̂𝛽𝑅𝑅 = (𝑋𝑋𝑅𝑅𝑇𝑇𝑋𝑋𝑅𝑅)−1𝑋𝑋𝑅𝑅𝑇𝑇𝑌𝑌𝑅𝑅 

 

𝑓𝑓𝑓𝑓𝑖𝑖∗ =

{ 
 
  

𝑟𝑟𝑖𝑖(𝑅𝑅)
𝜎̂𝜎𝑅𝑅−𝑖𝑖√1 − h𝑖𝑖𝑖𝑖(𝑅𝑅)

      𝑓𝑓𝑓𝑓𝑓𝑓    𝑖𝑖 ∈ 𝑅𝑅,

𝑟𝑟𝑖𝑖(𝑅𝑅)
𝜎̂𝜎𝑅𝑅√1 + h𝑖𝑖𝑖𝑖(𝑅𝑅)

           𝑓𝑓𝑓𝑓𝑓𝑓    𝑖𝑖 ∈ 𝐷𝐷,
 

 

𝐶𝐶𝐶𝐶(𝑓𝑓𝑟𝑟𝑖𝑖∗) = median(𝑓𝑓𝑓𝑓𝑖𝑖∗) ± 3MAD(𝑓𝑓𝑟𝑟𝑖𝑖∗)  

 

𝑓𝑓h𝑖𝑖𝑖𝑖∗ =

{ 
 
  

ℎ𝑖𝑖𝑖𝑖(𝑅𝑅)
1 − ℎ𝑖𝑖𝑖𝑖(𝑅𝑅)

          𝑓𝑓𝑓𝑓𝑓𝑓    𝑖𝑖 ∈ 𝑅𝑅,

h𝑖𝑖𝑖𝑖(𝑅𝑅)
1 + h𝑖𝑖𝑖𝑖(𝑅𝑅)

           𝑓𝑓𝑓𝑓𝑓𝑓     𝑖𝑖 ∈ 𝐷𝐷,
 

 
𝐶𝐶𝐶𝐶(𝑓𝑓ℎ𝑖𝑖𝑖𝑖∗ ) = median(𝑓𝑓ℎ𝑖𝑖𝑖𝑖∗ ) + 3MAD(𝑓𝑓ℎ𝑖𝑖𝑖𝑖∗ )  

 

𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖∗ = √(𝜑𝜑𝑖𝑖 − 𝜑̅𝜑𝑅𝑅)𝑇𝑇Σ𝜑𝜑𝑅𝑅
−1(𝜑𝜑𝑖𝑖 − 𝜑̅𝜑𝑅𝑅),             𝑖𝑖 = 1,2, … , 𝑛𝑛, 

 

𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖
∗ = √(𝑛𝑛 − 1)𝑝𝑝

(𝑛𝑛 − 𝑝𝑝) 𝐹𝐹𝛼𝛼(𝑝𝑝,𝑛𝑛−𝑝𝑝),        𝑖𝑖 = 1,2, … , 𝑛𝑛, 

 

FIGURE 1. FGLV against Fast Generalized Studentized Residuals 
(FGSR)

FG
SR

 

Influential 
Observation 

(IO) 

Influential 
Observation 

(IO) 

Regular 
Observations 

(RO) 

Good Leverage 
Observation 

(GLO) 

Influential 
Observation 

(IO) 

Influential 
Observation 

(IO) 

                                                   FGLV 

FIGURE 1. FGLV against Fast Generalized Studentized Residuals (FGSR) 

 



	 	 2089

SIMULATION STUDY RESULTS AND VERIFICATION

Monte Carlo simulation study is carried out to evaluate the 
performance of the proposed method. 

First simulation study: In this section, we used 
a simulation study to assess our new proposed (LMS-
RMDISE) and existing (GUM) methods. Following Lim 
and Habshah (2016), we generate a data with difference 
sizes, n = 20, 40, 60, 80, 100, and 200. A linear regression 
model with three independent variables (x1, x2 and x3) are 
generated by uniform distribution U(0,10). The error 
term is generated from standard normal distribution. 
The response variable is generated as yi = β0 + β1 xi1 + β2 
xi2 + β3 xi3 + εi with the true coefficient β = (1, 2, 3, 4). The 
simulation was replicated 5,000 times. 

First contamination (HLPs): We contaminated the 
data by introducing HLPs at three different percentage 
levels (α = 0.05, 0.10 and 0.15). To generate HLPs in the 
dataset, the first 100α% observations of the regular data in 
x1, x2 and x3 are generated by uniform distribution U(20,30) 
at different contamination levels for different samples. 

Second contamination (VOs): The data was 
contaminated by introducing VOs at three different 

percentage levels (α = 0.05, 0.10 and 0.15). The VOs are 
generated in such a way that the first 100α% observations 
of the regular data in  are replaced by uniform distribution 
U(20,30) at different contamination levels for different 
samples.

Tables 1 and 2 presents the simulation result of the 
number of suspected unusual observations (SUO) detected 
and running times to complete the simulation of 5,000 
runs by GUM and LMS-RMDISE for both HLPs and VOs 
contamination, respectively.

It is clearly seen that the number of SUO detected 
by LMS-RMDISE and GUM are closed to each other. 
However, the SUO of LMS-RMDISE is much closer to the 
actual number of HLPs compared to GUM. Moreover, the 
running time of LMS-RMDISE is shorter than the GUM 
due to the excellent performance of ISE. Figure 2 presents 
the running time of GUM and LMS-RMDISE for the case of 
HLPs contamination (Table 1). It is clearly seen that the 
LMS-RMDISE has lower computer running time compared 
to GUM which also indicate that the algorithm of LMS-
RMDISE is more efficient than that of GUM.

TABLE 1. Running time and suspected unusual observations (SUO) detection of GUM and LMS-RMDISE for HLPs contamination

Simple size Actual
no. of HLPs

GUM LMS-RMDISE Percentage 
reduction in running 

times
Average Est. No. of 

SUO
(Approx No.)

Running times 
(s)

Average Est. No. 
of SUO

(Approx No.)

Running 
times (s)

5%

20 1 2.6202 (3) 285 2.0916 (2) 10 96.49
40 2 3.5524 (4) 234 2.7052 (3) 13 94.44
60 3 3.5180 (4) 320 3.2474 (3) 15 95.31
80 4 4.4892 (4) 414 4.2312 (4) 17 95.89
100 5 6.0116 (6) 516 5.1162 (5) 19 96.32

200 10 11.0020 (11) 1074 10.1472 (10) 29 97.30

10%

20 2 2.4568 (2) 287 2.7834 (3) 10 96.52
40 4 4.6644 (5) 234 4.3740 (4) 12 94.87
60 6 6.5508 (7) 318 6.3832 (6) 15 95.28
80 8 8.6950 (9) 413 8.2306 (8) 17 95.88
100 10 10.7108 (11) 514 10.1140 (10) 19 96.30

200 20 21.0806 (21) 1067 20.1856 (20) 28 97.38

15%

20 3 3.6112 (4) 287 3.3014	  (3) 10 96.52
40 6 6.6738 (7) 234 6.2536 (6) 12 94.87
60 9 9.5098 (10) 319 9.1632 (9) 14 95.61
80 12 12.5736 (13) 413 12.1424 (12) 16 96.13
100 15 15.4786 (15) 513 15.1160 (15) 18 96.49
200 30 31.1480 (31) 1068 30.0710 (30) 28 97.38
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TABLE 2. Running time and suspected unusual observations (SUO) detection of GUM and LMS-RMDISE for VOs contamination

Simple size Actual
no. of VOs

GUM LMS-RMDISE Percentage 
reduction in 

running times
Average Est. No. 

of SUO
(Actual No.)

Running times 
(s)

Average Est. No. 
of SUO

(Actual No.)

Running times 
(s)

5%
20 1 2.4209 (2) 330 2.2962 (2) 19 94.24
40 2 3.3244 (3) 234 2.3026 (2) 22 90.60
60 3 3.4827 (3) 317 3.3741 (3) 24 92.43
80 4 4.4243 (4) 416 4.3297 (4) 26 93.75
100 5 5.2621 (5) 515 5.2465 (5) 28 94.56
200 10 10.1203 (10) 1103 10.1372 (10) 37 96.65

10%
20 2 2.3543 (2) 331 2.2341 (2) 19 94.26
40 4 4.4437 (4) 234 4.3742 (4) 22 90.60
60 6 6.5811 (7) 318 6.4325 (6) 25 92.14
80 8 8.4150 (8) 417 8.3056 (8) 27 93.53
100 10 10.4875 (10) 516 10.2102 (10) 29 94.38
200 20 21.5212 (21) 1103 20.4506 (20) 38 96.55

15%
20 3  3.4018(3) 331 3.3707 (3) 19 94.26
40 6  6.4792(6) 235 6.3924 (6) 21 91.06
60 9 9.4008 (9) 319 9.3814 (9) 25 92.16
80 12 12.3692 (12) 417 12.2423 (12) 27 93.53
100 15 15.2752 (15) 516 15.1898 (15) 29 94.38
200 30 30.3956 (30) 1104 30.4106 (30) 40 96.38

FIGURE 2. Running time GUM and LMS-RMDISE for each sample size and 
contamination level for the case of HLPs contamination
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Second simulation study: We used a Monte Carlo 
simulation study to assess the performance of our 
proposed IOs identification method, FIID and the existing 
ID method. The evaluation of these schemes is based on 
the rate of correct detection of IOs and the rate of masking 
and swamping effects. The best method is the one that 
has higher percentage of correct detection of IO’s with 
smaller rate of masking and swamping. Following the 
designed experiment of Mohammed et al. (2015), the 
explanatory variables are generated randomly from a 
uniform distribution with mean zero and variance one. The 
response variable is generated from y = Xβ + ε with p = 3 
(number of explanatory variables). The true coefficient  β 
= (1,1,1,1) and ε ~N(0,1). In each experiment, different 
size of samples (n = 50, 100, 150 and 200) and different 
percentage of influential observations (α = 0.05, 0.10, 0.15 
and 0.20) are considered. The influential observations 

are created at the position of the first 100α% observation 
for both X and y variables. To generate the influential 
observations, the first observation in each variable is kept 
fixed at 5 and the consecutive values are generated by 
multiplying the values index, j, by 5. The simulation was 
replicated 5,000 times. 
	 Table 3 present the percentage of correct detection 
of IOs and masking and swamping rates for all possible 
combinations of n and α. As already explained, masking 
is declaring outliers as inliers and swamping is declaring 
inliers as outliers. It is interesting to observe that the 
proposed FIID method consistently display higher rate 
of correct detection of IOs with a smaller swamping and 
masking rates regardless of the size of n and α. The results 
of the study show that the FIID method performs better 
than ID method in correctly identification of IOs in multiple 
linear regression.

TABLE 3. Percentage of correct identification of influential observations, masking and swamping for simulation data

Cont. level n %  Correct detection %  Masking %  Swamping

ID FIID ID FIID ID FIID

5%

50 100 100 0 0.02 9.28 1.70

100 100 100 0 0 6.04 0.64

150 100 100 0 0 5.02 0.40

200 100 100 0 0 6.05 1.26

10%

50 100 100 0 0 5.52 0.35

100 87.56 100 12.44 0 10.06 1.92

150 94.30 100 5.70 0 8.45 1.41

200 82.36 100 17.64 0 11.01 2.30

15%

50 96.50 100 3.50 0 9.61 0.45

100 76.02 100 23.98 0 15.78 3.82

150 60.40 100 39.60 0 13.45 2.71

200 53.21 100 46.79 0 11.67 2.65

20%

50 83.72 100 16.28 0 27.20 5.32

100 56.32 100 43.68 0 21.75 7.28

150 47.42 100 52.58 0 18.45 5.51

200 43.56 100 56.44 0 22.86 4.64
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NUMERICAL EXAMPLE

We use air craft data set taken from Gray (1985) to 
compare the performance of the proposed FIID method 
with the existing ID method. This data set contains 23 
number of observations with 4 predictor variables (aspect 
ratio, lift to drag ratio, weight of the plane, and maximal 
thrust) and the cost being the response variable. Table 4 
exhibits diagnostic measures and their cut-off points (in 
parenthesis). In the initial step both GUM and LMS-RMDISE 
identified eight observations (10, 11, 14, 16, 17, 18, 19 
and 22) as suspected unusual. Finally, the ID identifies 
observations 14, 16, 17, 18, and 22 as IOs as shown in 
Figure 3 (Index vs ID plot). However, the FIID identifies 
observation 16 and 22 as IOs and, 17 as good leverage 
observation which can be clearly seen in Figure 3 (GLV 
vs GSR plot). In order to justify which methods correctly 
identify the IOs, we applied the OLS method to the original 
data and the remaining data after omitting the IOs for 
both ID and FIID. The parameter estimates and standard 
error (S.E.) for each variable were computed. A good 
identification method is one which corresponds to the 
highest total percentage changes for various estimates. 
The percentage of change in estimator (PCE) is computed 

as,

wherePCE = |
𝛼̂𝛼𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 − 𝛼̂𝛼𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

𝛼̂𝛼𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂
| × 100% 

 

Original is the OLS parameter estimates of the original 
data; PCE = |

𝛼̂𝛼𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 − 𝛼̂𝛼𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂
𝛼̂𝛼𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

| × 100% 

 

Proposed is the OLS estimates of the remaining data 
after IOs are removed; and |.| is the absolute value. 

Beside using PCE as a criterion of a good method, 
we also look at the standard errors of the estimates after 
removing the suspected IO. The method which has the 
smaller SE of the estimates after deleting the suspected IO 
can be considered a good method.

Table 5 shows the OLS parameter estimates and the 
standard errors of estimates (in parenthesis) for original 
and remaining data. It can be observed from this table 
that most parameter estimates associated with FIID 
identification method have the highest percentage of 
changed compared to ID method. Moreover, the standard 
error of estimates after removing the IO by FIID method 
is smaller than the ID. These results justified that the FIID 
method correctly identified the IOs, because the IOs are 
responsible for this changing in the results.

PCE = |
𝛼̂𝛼𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 − 𝛼̂𝛼𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

𝛼̂𝛼𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂
| × 100% 

 

TABLE 4. Diagnostic measure for IOs (ID and FIID) for Aircraft data

Ind

Identification of suspected unusual observations

(5.965, 
-5.296)

(0.546)
IDi

(3.043)
FIID

Group Union Method (GUM)
RMDISE
(5.531)

Std.Stud
res.

|2.50|

Std.LMS
res.

|2.50|

hii
(0.522)

CD
(0.870)

DF
FITS

|0.834|

1 0.500 -0.534 0.181 0.014 0.231 1.538 -0.456 0.240 1.437 0.993
2 0.929 0.019 0.150 0.037 0.383 1.706 0.306 0.229 1.247 1.252
3 0.764 1.332 0.147 0.024 0.309 1.503 1.531 0.163 0.531 1.901
4 -0.312 0.253 0.150 0.004 -0.126 1.893 -0.517 0.053 1.151 1.516
5 0.276 -0.092 0.084 0.002 0.077 1.273 -0.259 0.097 0.701 0.591
6 -0.113 0.491 0.227 0.001 -0.061 3.013 0.400 0.140 0.165 2.102
7 -0.424 -0.534 0.135 0.007 -0.160 2.070 -0.932 0.105 0.927 0.533
8 -0.301 -0.432 0.114 0.003 -0.102 2.516 -1.099 0.046 1.344 0.953
9 -0.024 2.395 0.242 0.000 -0.014 1.975 1.651 0.119 0.874 0.597
10 0.495 4.785 0.081 0.005 0.136 3.002 4.646 0.163 2.455 2.156
11 0.188 4.619 0.150 0.002 0.076 1.778 4.311 0.234 2.135 0.760
12 -1.128 -0.057 0.051 0.015 -0.245 1.920 -0.907 0.173 1.065 2.203
13 0.308 1.235 0.061 0.001 0.072 1.085 1.032 0.069 1.134 0.354
14 0.234 -5.809 0.875 0.636 1.568 19.120 -5.274 0.106 3.493 2.572
15 0.246 0.534 0.063 0.001 0.058 2.650 0.334 0.063 1.040 1.163
16 0.748 9.203 0.126 0.019 0.273 5.723 7.421 0.313 3.946 5.062
17 -2.069 -0.534 0.190 0.257 -1.124 5.537 -1.769 0.550 5.530 5.160
18 -0.497 4.299 0.099 0.006 -0.155 2.283 4.187 0.508 4.053 2.444
19 -0.925 3.715 0.100 0.022 -0.293 5.226 2.379 0.307 1.780 6.821
20 0.861 -0.374 0.152 0.033 0.358 5.344 -0.292 0.070 0.953 1.576
21 -1.758 1.684 0.120 0.099 -0.665 4.647 0.475 0.341 2.308 6.851
22    2.911 24.847 0.445 2.536 5.352 8.310 14.995 0.631 8.678 12.157
23 -0.912 -0.534 0.055 0.011 -0.204 2.118 -1.374 0.121 1.156 1.507

𝑟𝑟𝑖𝑖∗ ≈ 𝑓𝑓𝑟𝑟𝑖𝑖∗ 

 

ℎ𝑖𝑖𝑖𝑖∗ ≈ 𝑓𝑓ℎ𝑖𝑖𝑖𝑖∗  
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FIGURE 3. ID and FIID plots for Aircraft data set

 

 

 

TABLE 5. PCE values for ID and FIID based on OLS for Aircraft data set

Note:  * p < 0.1; ** p < 0.05; *** p < 0.01

Variables

Original data Remaining data

Estimation
(S.E)

Removed IOs by ID 
[cases (14,16,17,18,22)]

Removed IOs by FIID
[cases (16,22)]

Estimation
(S.E) PCE Estimation

(S.E) PCE

Aspect
ratio

  -3.853***
(1.763)

-2.752**  
(0.979) 28.58 -3.049***

(0.919) 20.90

Lift to Drag ratio 2.488*
(1.187) 3.182*  (1.770) 27.89 1.210*

(0.649) 51.37

Weight of Plane 0.003***
(0.0005)

0.0012***  
(0.0004) 60.00 0.001***

(0.0004) 66.74

Maximal Thrust -0.002***
(0.0005)

-0.0006**  
(0.0003) 70.00    -0.001***

(0.0003) 50.00

Constant -3.791
(10.116) 4.979  (6.180) 231.34 9.501

(5.578)
350.60
(44.93)

No. of obs. 23 18 21

Residual Std. Error 8.406 4.424 47.37 4.349 48.26

Df 18 13 16

F Statistics 34.17*** 19.77*** 42.14 18.95*** 44.54
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CONCLUSION

In this paper, we proposed a method for identifying 
multiple influential observations and good leverage values 
in multiple linear regression named Fast Improvised 
Influential Distance (FIID). The proposed FIID is very 
successful in correctly identifying the influential 
observation and reducing the effects of swamping and 
masking compared to the existing method (ID) in this 
study.  Another advantage of FIID is that it is very fast as 
it employs LMS-RMDISE at the initial step for detecting 
the suspected unusual observations. The LMS-RMDISE has 
a very fast computation time compared to GUM used by 
ID method due to its simplicity and computational ease. 
Therefore, the algorithm of FIID is simple and faster than 
that of ID. Hence, it is highly recommended to use 
the new proposed FIID method in the identification of 
influential observation in multiple linear regression. 
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