S@MR

СИБИРСКИЕ ЭЛЕКТРОННЫЕ МАТЕМАТИЧЕСКИЕ ИЗВЕСТИЯ

Siberian Electronic Mathematical Reports http://semr.math.nsc.ru

Том 13, стр. 111–121 (2016) DOI 10.17377/semi.2016.13.009 УДК 512.542 MSC 20D05

ON RECOGNITION BY SPECTRUM OF SYMMETRIC GROUPS

I.B. GORSHKOV, A.N. GRISHKOV

ABSTRACT. The spectrum of a group is the set of its element orders. A finite group G is said to be recognizable by spectrum if every finite group with the same spectrum is isomorphic to G. We prove that if $n \in \{15, 16, 18, 21, 27\}$ then symmetric groups Sym_n are recognizable by spectrum.

Keywords: finite group, simple group, symmetric group, spectrum of a group, recognizability by spectrum.

1. INTRODUCTION

Let G be a finite group, $\pi(G)$ be the set of prime divisors of its order, $\omega(G)$ be the spectrum of G, i.e. the set of its element orders. The Gruenberg-Kegel graph, or the prime graph, GK(G) is defined as follows. The vertex set of the graph is $\pi(G)$. Two distinct primes p and q of $\pi(G)$ seen as vertices of the graph GK(G), are connected by an edge if and only if $pq \in \omega(G)$. A group G is said to be recognizable by spectrum (shortly, recognizable) if for every finite group L the equality $\omega(L) = \omega(G)$ implies that $L \simeq G$. Two groups are said to be isospectral if they have the same spectra. Denote the symmetric group of degree n by Sym_n .

It was proved in [1, 2, 3, 4] that if $n \in \{2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14\}$ then the group Sym_n is recognizable. It was shown in [5] that Sym_p is recognizable where p is a prime and p > 13, there were also obtained strong constraints on a group with the same spectrum as Sym_{p+1} . It was shown in [6] that Sym_n is recognizable if $n \notin \{2, 3, 4, 5, 6, 8, 10, 15, 16, 18, 21, 27, 33, 35, 39, 45\}$, there it was also proved

Gorshkov, I.B., Grishkov, A.N. On recognition by spectrum of symmetric groups. © 2016 Gorshkov I.B., Grishkov A.N.

The work is supported by the FAPESP (grant no. 2014/08964-1), by the grant of the President of Russian Federation for young scientists (grants no. MK-6118.2016.1), by the RFFI (grant no. 13-01-00239a).

Received March, 13, 2015, published February, 26, 2016.

that if Sym_{16} is recognizable then the groups Sym_{33} , Sym_{35} , Sym_{39} , Sym_{45} are recognizable too.

In this paper we prove recognizability of the symmetric groups

 Sym_n , $n \in \{15, 16, 18, 21, 27\}.$

Theorem 1. The group Sym_n , where $n \in \{15, 16, 18, 21, 27\}$, is recognizable.

Corollary 1. The group Sym_n , where $n \in \{33, 35, 39, 45\}$, is recognizable.

Corollary 2. The recognizability problem for Sym_n , $n \neq 10$, is solved.

2. Preliminaries

Lemma 1 ([7, Lemma 2.2]). Let $S = P_1 \times ... \times P_r$, where P_i are isomorphic non-Abelian simple groups. Then $Aut(S) \simeq (Aut(P_1) \times ... \times Aut(P_r)).Sym_r$.

Lemma 2 ([8, Theorem 3.1]). Given a Frobenius group G with kernel A and complement B, we have

(a) A is nilpotent;

(b) every Sylow p-subgroup of B is a cyclic group for an odd prime p, and a cyclic or generalized quaternion group for p = 2.

Lemma 3 ([9, Proposition 1]). Let G be a finite group, $t(G) \ge 3$, and let K be the maximal normal soluble subgroup of G. Then for every subset ρ of primes in $\pi(G)$ such that $|\rho| \ge 3$ and all primes in ρ are pairwise nonadjacent in GK(G), the intersection $\pi(K) \cap \rho$ contains at most one number. In particular, G is insoluble.

Lemma 4 ([10, Lemma 3.6]). Let s and p be distinct primes, a group H be a semidirect product of a normal p-subgroup T and a cyclic subgroup $C = \langle g \rangle$ of order s, and let $[T,g] \neq 1$. Suppose that H acts faithfully on a vector space V of positive characteristic t not equal to p. If the minimal polynomial of g on V does not equal $x^s - 1$, then

(*i*) $C_T(q) \neq 1$;

(ii) T is non-Abelian;

(iii) p = 2 and $s = 2^{2^{\circ}} + 1$ is a Fermat prime.

Lemma 5 ([11, Lemma 14]). Any odd element from $\pi(Out(P))$ where P is any simple group, either belongs to the spectrum of P or does not exceed m/2, where $m = max_{p \in \pi(P)}p$.

Lemma 6 ([5, Lemma 6]). Let H be a finite group and let V be a proper normal subgroup of H such that H/V is isomorphic to Alt_m . Then $\omega(H) \notin \omega(Sym_m)$ provided that $m \geq 6$ and $m \neq 8$.

Lemma 7 ([5]). Recognizability of the symmetric group of degree r + 1, where $r \ge 17$ is prime, amounts to the following: for every proper covering G = N.A of an arbitrary finite group N by a group A isomorphic to Sym_r or Alt_r , the inequality $\omega(G) \ne \omega(Sym_{r+1})$ holds.

Lemma 8 ([6, Theorem 2]). If Sym_{16} is recognizable then the groups

 $Sym_{33}, Sym_{35}, Sym_{39}, Sym_{45}$

are recognizable too.

Lemma 9 ([12, Lemma 1]). If a Frobenius group FC with kernal F and cyclic complement $C = \langle c \rangle$ of order n acts faithfully on a vector space V of nonzero characteristic p coprime with the order of F then the natural semidirect product VC contains an element of order $p \cdot n$.

3. Proof of Main Theorem for Sym_{15}

Proposition 1. The group Sym_{15} is recognizable.

Let $\omega = \omega(G) = \omega(Sym_{15})$, K be the maximal normal soluble subgroup of G, $S = Soc(G/K) \simeq S_1 \times ... \times S_n$, where $S_i, 1 \le i \le n$ are non-Abelian simple groups. Obviously, the prime divisors of |S| are not greater than 13. Using the classification of finite simple groups it is not hard to obtain the full list of all finite simple groups L with the property $\pi(L) \subseteq \{2, 3, 5, 7, 11, 13\}$ (see [13]).

Lemma 10. The group S is a finite simple group.

Proof. Let $\overline{G} = G/K$, $\widetilde{G} = \overline{G}/S$. Obviously, $\overline{G} \leq Aut(S)$ and $\widetilde{G} \leq Out(S)$. Suppose that n > 1. By Lemma 3 we may assume that there exists $p \in \{11, 13\}$ such that $p \notin \pi(K)$. Suppose that $|\widetilde{G}|$ is divisible by p. Then \overline{G} contains an element g of order p that acts by conjugation on S and induces an outer automorphism. We have $Out(S) \simeq Out(P_1) \times \ldots \times Out(P_r)$, where the groups P_j are direct products of isomorphic S_i . For some j, therefore, $g \in Out(P_j)$. It follows by Lemma 1 that $g \in Out(S_i)$ or $S_i^g \neq S_i$. By [13], for all non-Abelian finite simple groups R with the property $\pi(R) \subseteq \{2,3,5,7,11,13\}$ except for $R \simeq L_3(3)$, we have $\{5,7\} \cap \pi(R) \neq \emptyset$. Assume that there exists $1 \leq i \leq n$ such that $S_i \not\simeq L_3(3)$, we can assume that i = 1. Suppose that $S_1^g = S_1$. By Lemma 5, g is not an outer automorphism of a group $S_j, j \in \{1, ..., n\}$. Hence $S_1 \leq C_{\overline{G}}(g)$ and so \overline{G} has an element whose order is equal to pt, where $t \in \{5,7\} \cap \pi(S_1)$, but $pt \notin \omega$. Thus $S_1 \neq S_1^g$. Let $x = hh^g h^{g^2} \dots h^{g^{p-1}}, h \in S_1, |h| \in \{5,7\} \cap \pi(S_1)$. It is easy to check that $x \in C_{\overline{G}}(g)$, |x| = |h|. Hence \overline{G} contains an element y and |y| = p|h|, but $p|h| \notin \omega$ and so $S_i \simeq L_3(3)$ for all $1 \leq i \leq n$. We have $\{3, 13\} \subset \pi(L_3(3))$. The group S has an element of order 39, since n > 1, but $39 \notin \omega$. Thus $p \in \pi(S)$.

Suppose that there exists S_i such that $13 \in \pi(S_i)$. By [13], for all non-Abelian finite simple groups R with the property $\pi(R) \subseteq \{2, 3, 5, 7, 11, 13\}$, we have $\{3, 5\} \cap \pi(R) \neq \emptyset$. Let $g \in S_i, |g| = 13, h \in S_j, i \neq j, |h| \in \{3, 5\} \cap \pi(S_j)$. Then |gh| = 13|h|, but $13|h| \notin \omega$. Hence $11 \in \pi(S)$. It is easy to check that there exists $x \in S$ and |x| = 11t, where $t \in \{5, 7\} \cap \pi(S)$; a contradiction. Then n = 1.

By Lemma 10, we may assume that S is a non-Abelian finite simple group and $\pi(S) \subseteq \{2, 3, 5, 7, 11, 13\}.$

Lemma 11. 11, $13 \in \pi(S)$.

Proof. Assume that $13 \notin \pi(S)$. It follows from Lemmas 3, 5 and [14] that $\{5, 7, 11\} \subseteq \pi(S), \{5, 7, 11\} \cap \pi(|G|/|S|) = \emptyset$. By Lemmas 5 and 10 we have $13 \in \pi(K)$. Hence $35 \in \omega(S)$. From [13] and [14], it follows that $S \simeq Alt_{12}$. Note that S contains a subgroup T isomorphic to a Frobenius group with kernel of order 11 and complement of order 5. Let $P \in Syl_{13}(K), N = N_G(P)$. Since $N_G(P)/N_K(P) \simeq G/K, \{5, 11\} \cap \pi(K) = \emptyset$ and the Schur-Zassenhaus theorem, we see that there exists $\widetilde{T} \leq N$ such that $\widetilde{T} \simeq T$. Let $\overline{N} = N/\Phi(P)$ and \overline{T} isomorphic to T. From Lemma 4 it follows that \overline{N} contains an element of order 13t, where $t \in \{5, 11\}$, but $\omega(\overline{N}) \subseteq \omega$; a contradiction.

Assume that $11 \notin \pi(S)$. It follows from Lemma 3 that $\{5,7,13\} \subseteq \pi(S)$ and $\{5,7,13\} \cap \pi(|G|/|S|) = \emptyset$. Hence $35 \in \omega(S)$. By [13] and [14], there are no such groups.

From [13] and Lemma 11 it follows that S is isomorphic to one of the groups $L_5(3)$, $L_6(3)$, Alt_{13} , Alt_{14} , Alt_{15} , Alt_{16} , Suz, Fi_{22} .

Lemma 12. $S \notin \{L_5(3), L_6(3), Alt_{16}, Fi_{22}\}.$

Proof. Note that $121 \in \omega(L_5(3)) \setminus \omega \subseteq \omega(L_6(3)), 16 \in \omega(Fi_{22}) \setminus \omega, 63 \in \omega(Alt_{16}) \setminus \omega$. Hence $S \notin \{L_5(3), L_6(3), Alt_{16}, Fi_{22}\}$.

Thus the group S is isomorphic to one of the groups Alt_{13} , Alt_{14} , Suz or Alt_{15} . Assume that $S \in \{Alt_{13}, Alt_{14}, Suz\}$.

Lemma 13. 11, 13 $\notin \pi(K)$.

Proof. Suppose that $\pi(K) \cap \{11, 13\} \neq \emptyset$. Let $p \in \pi(K) \cap \{11, 13\}$, $H = O_{p'}(K)$. There exists a normal *p*-subgroup *T* in a group G/H. Since $5p \notin \omega(G)$, we have a group have a Frobenius group *TM* with kernal *T* and complement $M \in Syl_5(G/H)$. From Lemma 2 it follows that *M* is cyclic. But $N \in Syl_5(S)$ is elementary Abelian group of order 25 and $N \leq M/(M \cap (K/H))$; a contradiction.

Lemma 14. 5, 7 $\notin \pi(K)$.

Proof. Suppose that $\pi(K) \cap \{5,7\} \neq \emptyset$. Let $p \in \pi(K) \cap \{5,7\}$, H be a Hall $\{3,5,7\}$ subgroup of K. Since $N_G(H)/N_K(H) \simeq G/K$ and $\omega(N_K(H)) \subseteq \omega$, we may assume
that $H \lhd G$. Since $13t \notin \omega$ for $t \in \{3,5,7\}$, Lemma 2 implies that H is nilpotent. Let $\widetilde{G} = G/O_2(K), \ \widetilde{K} = K/O_2(K), \ T \in Syl_2(\widetilde{K})$. Assume that exists $g \in \widetilde{G}, |g| = 13$ and g acts on T nontrivially. From Lemma 4, it follows that in \widetilde{G} there is a element
of order 13p, but $13p \notin \omega$. Hence if $g \in N_{\widetilde{G}}(T), |g| = 13$, then $g \in C_{\widetilde{G}}(T)$. The
group S is generated by elements of order 13. Thus T.S is a central extension of T with S. Therefore $\widetilde{G}/\widetilde{H}$ contains a subgroup isomorphic to one of the groups $Alt_{13}, 2.Alt_{13}, Suz, 2.Suz$. From the tables of 5 and 7-modular characters of Alt_{13} , $2.Alt_{13}, Suz$, and 2.Suz (see [14]), it follows that G has an element of order 11p,
but $11p \notin \omega(G)$; a contradiction.

Lemma 15. $2, 3 \in \pi(K)$.

Proof. Since $13 \cdot 2 \in \omega(G) \setminus \omega(Aut(S))$ and $13 \notin \pi(K)$, we have $2 \in \pi(K)$. Since $7 \cdot 5 \cdot 3 \notin \omega(Aut(S))$ and $\{5,7\} \cap \pi(K) = \emptyset$, we have $3 \in \pi(K)$.

Lemma 16. $S \notin \{Alt_{13}, Alt_{14}, Suz\}.$

Proof. By Lemmas 13, 14 and 15, $\pi(K) = \{2,3\}$. Put $R_0 = 1, R_1 = O_2(G), R_2 = O_{2,3}(G), R_3 = O_{2,3,2}(G)$, and so forth. For some n, we have $R_n = K$ for the first time, and it is obvious that $n \geq 2$. Put $\overline{G} = G/R_{n-2}$ and $\overline{K} = K/R_{n-2}$. Then \overline{K} is a group in which the Sylow p-subgroup for p = 2 or 3 is normal. Suppose that p = 2. Then $\widetilde{G} = G/R_{n-1}$ possesses a nontrivial normal 3-subgroup $\widetilde{K} = K/R_{n-1}$. Note that $\widetilde{G}/\widetilde{K}$ contains a subgroup T isomorphic to one of the groups Alt_{13}, Suz . Since $39 \notin \omega$, the action of T on \widetilde{K} by conjugations is faithful. The table of 3-modular characters of Suz (see [14]) implies that $C_{\overline{K}}(g) \neq 1, |g| = 13$. Hence $T \simeq Alt_{13}$. The

114

table of 3-modular characters of Alt_{13} (see [14]) implies that every chief factor of G lying in \tilde{K} is a 12-dimensional irreducible representation over a field of characteristic 3, in which the dimension of the space of fixed points of elements of order 11 is equal to 2. Since there is a complement to \overline{K} in \overline{G} (see [15]), it follows that Alt_{13} acts on $P = R_{n-1}/R_{n-2}$. It is clear from the table of 2-modular characters of Alt_{13} (see [14]) that $C_P(x) \neq 1$ for an element $x \in Alt_{13}$ of order 11. Thus $C_{\overline{K}}(x)$ is an extension of a nontrivial 2-group by a 3-group of rank at least 2, and thus it contains an element of order 6. By the choice of x we deduce that G contains an element of order 66; thus p = 3. In this case $T = R_{n-1}/R_{n-2}$ is a 3-group which contains its centralizer in $K = K/R_{n-1}$. Assume that there exists $g \in G$, |g| = 13, and g acts on \widetilde{K} nontrivially. From Lemma 4, it follows that $39 \in \omega(\overline{G})$, but $39 \notin \omega$. The group S is generated by 13-elements. Thus the group \widetilde{G} contains a subgroup isomorphic to $K \times S$ or $H \times (2.S)$, for some group H. Let us show that in the second case \widetilde{K} is of order 2. Since G contains no elements of order $4 \cdot 13$, it follows that K is of period 2. If K is noncyclic then $C_T(\tilde{y}) \neq 1$ for some \tilde{y} in K. As above, an element of G of order 11 centralizes in $C_T(\tilde{y})$ some nontrivial element, and consequently G contains an element of order 66; a contradiction. Put N = 2.S if $\tilde{G} = 2.S$, and N = S if $\widetilde{G} = \widetilde{K} \times S$. In each case, since \overline{G} contains no elements of order 8.7, while G must, it follows that $R_{n-2} \neq 1$. The table of 3-modular characters (see [14]) implies that N acts trivially on \overline{K} . Furthermore, as in the case p = 2, we deduce that for elements x of N of order 11 the group $C_{R_{n-1}/R_{n-3}}(x)$ contains an element of order 22. Thus G contains an element of order 66; this is a contradiction. \square

Therefore $S \simeq Alt_{15}$. By Lemma 6 it follows that the subgroup K is trivial. Since $\omega(S) \neq \omega$ and $Aut(S) = Sym_{15}$, we see that $G \simeq Sym_{15}$. The proposition is proved.

4. Proof of Main Theorem for Sym_{16}

Proposition 2. The group Sym_{16} is recognizable.

Let $\omega = \omega(G) = \omega(Sym_{16})$, K be the maximal normal soluble subgroup of G, $S = Soc(G/K) \simeq S_1 \times \ldots \times S_n$, where $S_i, 1 \le i \le n$ are non-Abelian simple groups. Obviously, the prime divisors of |S| are not greater than 13. Using the classification of finite simple groups it is not hard to obtain the full list of all finite simple groups L with the property $\pi(L) \subseteq \{2, 3, 5, 7, 11, 13\}$ (see [13]).

Lemma 17. $13 \notin \pi(K)$.

Proof. Let $\overline{G} = G/K$, $\widetilde{G} = \overline{G}/S$. Suppose that $13 \in \pi(K)$. Then, from Lemma 3 we have $\{7,11\} \cap \pi(K) = \emptyset$. Let $p \in \{5,7,11\}$. Using Frattini argument we can obtain that in $G/O_{13'}(K)$ there exists a subgroup T.P such that T is isomorphic to Sylow 13-subgroup of K and P is isomorphic to Sylow p-subgroup of G/K. By Lemma 2 it follows that P and Sylow p-subgroups of the group G/K are cyclic of order p. Suppose that $11 \in \pi(\widetilde{G})$. Let $g \in \overline{G}, |g| = 11$ and the image of g in \widetilde{G} is not trivial. Since $11 \notin \pi(Out(S_i))$ for all $1 \leq i \leq n$, we have $S_i^g \neq S_i$ for some i. The order of any non-Abelian finite simple group R with property $\pi(R) \subseteq \{2,3,5,7,11,13\}$ is divisible by 5, 7 or 13(see [13]). Suppose that $p \in \{5,7\} \cap \pi(S_i)$. Then the Sylow psubgroups of group \overline{G} are non-cyclic. Hence $\{5,7\} \cap \pi(S_i) = \emptyset$. From [13] it follows that $S_i \simeq L_3(3)$ and $13 \in \pi(S_i)$. In the same way as in proof of Lemma 10, we obtain that in \overline{G} there is element of order $13 \cdot 11$, but $13 \cdot 11 \notin \omega$. Thus $11 \in \pi(S)$. It is easy to prove that $7 \in \pi(S)$. Since $77 \notin \omega$ it follows that there exists S_i such that $7, 11 \in \pi(S_i)$. From [13] and the fact that the Sylow 5, 7 and 11-subgroups of S are cyclic, we see that $S_i \simeq M_{22}$ or $U_6(2)$. Since $\{5, 7, 11\} \subseteq \pi(S_i)$, we have $S \simeq S_i$. From [16] we have $R < L_2(11) < M_{22} < U_6(2)$, where R is a Frobenius group with kernel of order 11 and complement of order 5. Let T be a Hall $\{13, 5\}$ -subgroup of K. Using the Frattini argument we obtain that G contains a section isomorphic to T.R. From Lemma 4 it follows that $65 \in \omega(T.R)$ or $143 \in \omega(T.R)$; a contradiction.

Lemma 18. The group S is a finite simple group.

Proof. Let $\overline{G} = G/K$, $\widetilde{G} = \overline{G}/S$. Suppose that n > 1. From Lemma 17 we have 13 ∈ π(\overline{G}). By Lemma 3, it follows that there exists $p \in \{7, 11\} \cap \pi(\overline{G})$. Suppose that 13 ∈ π(\widetilde{G}). Then there exists $g \in \overline{G}$ such that |g| = 13 and g acts by conjugation on S and induces an outer automorphism. By [13], for all non-Abelian finite simple groups R with property $\pi(R) \subseteq \{2, 3, 5, 7, 11, 13\}$ except when $R \simeq L_3(3)$, we have $\{5, 7\} \cap \pi(R) \neq \emptyset$. Assume that there exists $1 \le i \le n$ such that $S_i \not\simeq L_3(3)$, we can assume that i = 1. Suppose that $S_1^g = S_1$. By Lemma 5, g is not an outer automorphism of a group $S_j, j \in \{1, ..., n\}$. Hence $S_1 \le C_{\overline{G}}(g)$ and so \overline{G} has an element of order pt, where $t \in \{5, 7\} \cap \pi(S_1)$, but $pt \notin \omega$. Thus $S_1 \neq S_1^g$. Let $x = hh^g h^{g^2} ... h^{g^{p-1}}, h \in S_1, |h| \in \{5, 7\} \cap \pi(S_1)$. It is easy to check that $x \in C_{\overline{G}}(g)$, |x| = |h|. Hence \overline{G} has an element x such that |x| = p|h|, but $p|h| \notin \omega$ and so $S_i \simeq L_3(3)$ for all $1 \le i \le n$. Since $p \notin \pi(L_3(3))$, it follows that $p \in \pi(\widetilde{G})$. It is easy to check that $13p \in \omega(\overline{G})$; a contradiction. Hence $13, p \in \pi(S_i)$. If n > 1 then $\{65, 91, 143\} \cap \omega(\overline{G}) \neq \emptyset$; a contradiction.

From [13], Lemmas 17 and 3 it follows that S is isomorphic to one of the groups $L_2(13)$, $L_2(27)$, $G_2(3)$, ${}^{3}D_4(2)$, $S_2(8)$, $L_2(64)$, $U_4(5)$, $L_3(9)$, $S_6(3)$, $O_7(3)$, $O_8^+(3)$, $G_2(4)$, $S_4(8)$, $L_5(3)$, $L_6(3)$, Alt_{13} , Alt_{14} , Alt_{15} , Alt_{16} , Suz, Fi_{22} .

Lemma 19. $S \notin \{L_2(64), U_4(5), L_5(3), L_6(3), L_3(9), S_4(8)\}.$

Proof. Note that $65 \in \omega(L_2(64)) \setminus \omega, 52 \in \omega(U_4(5)) \setminus \omega, 121 \in \omega(L_5(3)) \setminus \omega \subseteq \omega(L_6(3)), 91 \in \omega(L_3(9)) \setminus \omega, 65 \in \omega(S_4(8)) \setminus \omega$; a contradiction. \Box

Lemma 20. $S \notin \Omega = \{L_2(13), L_2(27), G_2(3), {}^{3}D_4(2), Sz(8), S_6(3), O_7(3), O_8^+(3), G_2(4), Alt_{13}, Alt_{14}, Alt_{15}\}.$

Proof. Groups from Ω have no elements of order 55 (see [14]), it follows that $\{5,11\} \cap \pi(K) \neq \emptyset$. From [16] we have that in the groups $G_2(3), O_7(3), O_8^+(3), G_2(4)$ there exists a subgroup isomorphic to $L_2(13)$, in the group $S_6(3)$ there exists a subgroup isomorphic to $L_2(27)$, in the groups Alt_{14}, Alt_{15} there exists a subgroup isomorphic Alt_{13} . Thus to prove the Lemma, it suffices to prove that $\omega(K.L) \setminus \omega(G) \neq \emptyset$ where $L \in \{L_2(13), L_2(27), {}^3D_4(2), Sz(8), Alt_{13}\}$, there exists an element g and $|g| \notin \omega$.

Let $p \in \pi(K) \cap \{11, 5\}, P \in Syl_p(K)$. Without loss of generality it can be assumed that $P \triangleleft G$ and $C_K(P) \leq P$. Suppose that in G/P there exists an element g of order 13 and $K/P \not\leq C_{G/P}(g)$. From Lemma 4 it follows that G contains element of order 13p, but $13p \notin \omega$; a contradiction. Since for all elements $x \in G/P$ of order 13 we have that x acts trivially on K/P and has no fixed point on P. Since S is a simple group, we see that all elements of order 13 generated S. Therefore, (K/P).S is a central extension of K/P with S. Note that (K/P).S contains a subgroup S or the Schur multiplier of S.

Suppose that $S \in \{L_2(27), {}^3D_4(2), Sz(8)\}$. From the tables of characters of S and the Schur multiplier it follows that G has an element of order 13p, but $13p \notin \omega(G)$; contradiction.

Suppose that $S \simeq L_2(13)$. Since $11 \notin \pi(S)$, we can assume that p = 11. From the tables of characters of S and the Schur multiplier it follows that G has an element of order $13 \cdot 11$ or $7 \cdot 11$; contradiction.

Therefore, $S \simeq Alt_{13}$. From the tables of 5 and 11-modular characters of Alt_{13} and $2.Alt_{13}$ (see [14]) it follows that the element of order 13 acts with no fixed points only on the 12-dimensional permutation module, but in this case centralizes of an element of order 18 is nontrivial and hence $18p \in \omega$; a contradiction.

Therefore, $S \simeq Alt_{16}$. By Lemma 6 it follows that the subgroup K is trivial. Hence $\omega(S) \neq \omega$ and $Aut(S) = Sym_{16}$ we see that $G \simeq Sym_{16}$. The proposition is proved.

5. Proof of Main Theorem for Sym_{18}

Proposition 3. The group Sym_{18} is recognizable.

From Lemma 7 it follows that if $\omega(G) = \omega(Sym_{18})$ where $G \neq Sym_{18}$, then $G \simeq K.Alt_{17}$ or $K.Sym_{17}$ where K is a soluble group. Since $17t \notin \omega$, for all $t \in \pi(K)$, using Lemma 2 we can see that K is nilpotent. Since $77 \notin \omega(Sym_{17})$ we obtain $\{7,11\} \cap \pi(K) \neq \emptyset$. Let $p \in \{7,11\} \cap \pi(K), P \in Syl_p(K)$. We can assume that $K \simeq P$. From the tables of 7 and 11-modular characters of Alt_{14} (see [14]) it follows that G has an element g of order $pt, t \in \{7,11\} \setminus \{p\}$. Note that $R.Alt_6 \leq C_G(g^p)$ where R is a p-group. From the tables of 7 and 11-modular characters of Alt_6 (see [14]) it follows that $C_G(g)$ has an element of order 3t. Hence $3 \cdot 7 \cdot 11 \in \omega(G)$; a contradiction. Therefore, $G \simeq Sym_{18}$. The proposition is proved.

6. Proof of Main Theorem for Sym_{21}

Proposition 4. The group Sym_{21} is recognizable.

Let $\omega = \omega(G) = \omega(Sym_{21})$, K be the maximal normal soluble subgroup of G, $S = Soc(G/K) \simeq S_1 \times \ldots \times S_n$, where $S_i, 1 \leq i \leq n$ are non-Abelian simple groups. Obviously, the prime divisors of |S| are not greater then 19. Using the classification of finite simple groups it is not hard to obtain a full list of all finite simple groups L with $\pi(L) \subseteq \{2, 3, 5, 7, 11, 13, 17, 19\}$ (see [13]).

Lemma 21. The group S is a finite simple group.

Proof. Let $\overline{G} = G/K$, $\widetilde{G} = \overline{G}/S$. Obviously $\overline{G} \leq Aut(S)$ and $\widetilde{G} \leq Out(S)$. Suppose that n > 1. By Lemma 3 we may assume that there exists $p \in \{17, 19\}$ and $p \notin \pi(K)$. Suppose that $|\widetilde{G}|$ is divisible by p. Then \overline{G} contains an element g of order p that acts by conjugation on S and induces an outer automorphism. By Lemma 5, g is not an outer automorphism of a group $S_i, 1 \leq i \leq n$. By [13], for all non-Abelian finite simple groups R with property $\pi(R) \subseteq \{2, 3, 5, 7, 11, 13, 17, 19\}$ except when $R \simeq L_2(17)$, we have $\{5, 7, 13\} \cap \pi(R) \neq \emptyset$. Assume that there exists $1 \leq i \leq n$ such that $S_i \not\simeq L_2(17)$, we can assume that i = 1. Suppose that $S_1^g = S_1$. Hence $S_1 \leq C_{\overline{G}}(g)$ and so \overline{G} has an element whose order is equal to pt, where $t \in \{5,7,13\} \cap \pi(S_1\}$, but $pt \notin \omega$. Thus $S_1 \neq S_1^g$. Let $x = hh^g h^{g^2} \dots h^{g^{p-1}}, h \in S_1, |h| \in \{5,7,13\} \cap \pi(S_1)$. It is easy to check that $x \in C_{\overline{G}}(g), |x| = |h|$. Hence \overline{G} has an element x such that |x| = p|h|, but $p|h| \notin \omega$ and so $S_i \simeq L_2(17)$ for all $1 \leq i \leq n$. We have $\{9,17\} \subset \omega(L_2(17))$. The group S has an element of order $9 \cdot 17$ since n > 1, but $9 \cdot 17 \notin \omega$.

Thus $p \in \pi(S)$. Without loss of generality it can be assumed that $p \in \pi(S_1)$. It is easy to see that there exists $x \in S$ and |x| = pt, where $t \in \{5, 7, 9, 13\} \cap \omega(S_2)$; a contradiction. Then n = 1.

Lemma 22. $19 \in \pi(S)$.

Proof. Assume that $19 \notin \pi(S)$. Then $\{5, 7, 11, 13, 17\} \subset \pi(S)$ and

 $\{7, 13\} \cap \pi(|G|/|S|) = \emptyset.$

Hence $7 \cdot 13 \in \omega(S)$. From [13] and [14] it follows that there are no such groups. \Box

Lemma 23. $13, 17 \in \pi(S)$.

Proof. Suppose that $17 \notin \pi(S)$. Then $\{11, 13, 19\} \subset \pi(S)$. From [13] it follows that there are no such groups.

Suppose that $13 \notin \pi(S)$. Then $\{11, 17, 19\} \subset \pi(S)$. From [13] and Lemmas 22 and 23 it follows that there are no such groups.

From [13] it follows that S is isomorphic to one of the groups

 $Alt_n, 19 \le n \le 22,^2 E_6(2).$

Lemma 24. $S \not\simeq Alt_{22}$.

Proof. Note that $57 \in \omega(Alt_{22})$ but ω has no such elements; contradiction.

Lemma 25. $S \not\simeq^2 E_6(2)$.

Proof. Group ${}^{2}E_{6}(2)$ have no elements of order 91 (see [14]), it follows that $\{7, 13\} \cap \pi(K) \neq \emptyset$. From [16] we have that in the group ${}^{2}E_{6}(2)$ there exists a subgroup T isomorphic to $O_{8}^{-}(2)$.

Let $p \in \pi(K) \cap \{7, 13\}, P \in Syl_p(K)$. Without loss of generality it can be assumed that $P \lhd G$ and $C_K(P) \le P$. Suppose that in G/P there exists an element g of order 17 and $K/P \not\le C_{G/P}(g)$. From Lemma 4 it follows that G contains element of order 17p, but $17p \notin \omega$; a contradiction. Hence for all elements $x \in G/P$ of order 17 we have that x acts trivially on K/P and has no fixed point on P. Since T is a simple group, we see that all elements of order 17 generated T. Therefore, (K/P).Tis a central extension of K/P with T. Note that (K/P).T contains a subgroup Tor the Schur multiplier of T. From the tables of p-modular characters of T and the Schur multiplier (see [14]), it follows that G has an element of order 17p, but $17p \notin \omega(G)$; contradiction.

Lemma 26. $S \notin \{Alt_{19}, Alt_{20}\}.$

Proof. Let $S \in \{Alt_{19}, Alt_{20}\}$, H be a Hall 2'-subgroup of K. Since $13 \cdot 5 \cdot 3 \notin \omega(Aut(S))$, we see that H is not trivial. Without loss of generality it can be assumed that $H \lhd G$. Since $19p \notin \omega, p \in \pi(H)$, by Lemma 2 the subgroup H is nilpotent. Note that there exists R < S such that R is isomorphic to a Frobenius group with kernel order 19 and complement order 9. Since $\pi(K/H) \subseteq \{2\}$, we see that R acts on H. If $\{3, 13\} \cap \pi(H) \neq \emptyset$ then by Lemma 9 we obtain that H.R has an element

 $x \text{ and } |x| \in \{57, 27, 117, 247\};$ a contradiction. Since $13 \cdot 5 \cdot 3, 11 \cdot 7 \cdot 3 \notin \omega(G/K)$ we see that $\pi(H) = \{5, 7\}$ or $\pi(H) = \{5, 11\}$. From the table of 5-modular characters of Alt_{13} and $2.Alt_{13}$ (see [14]) it follows that G has an element of order $11 \cdot 5 \cdot 7$; a contradiction.

Therefore, $S \simeq Alt_{21}$. By Lemma 6 it follows that K is trivial. Since $\omega(S) \neq \omega$ and $Aut(S) = Sym_{21}$, we see that $G \simeq Sym_{21}$. The proposition is proved.

7. Proof of Main Theorem for Sym_{27}

Proposition 5. The group Sym_{27} is recognizable.

Let $\omega = \omega(G) = \omega(Sym_{27})$, K be the maximal normal soluble subgroup of G, $S = Soc(G/K) \simeq S_1 \times \ldots \times S_n$, where $S_i, 1 \le i \le n$ are non-Abelian simple groups. Obviously, the prime divisors of |S| are not greater then 23. Using the classification of finite simple groups it is not hard to obtain a full list of all finite simple groups L with the property $\pi(L) \subseteq \{2, 3, 5, 7, 11, 13, 17, 19, 23\}$ (see [13]).

Lemma 27. $23 \notin \pi(K)$.

Proof. Let $\overline{G} = G/K$, $\widetilde{G} = \overline{G}/S$. Suppose that 23 ∈ π(K). From Lemma 3 we have {11, 13, 17, 19} ∩ π(K) = Ø. By Lemma 2 and the Frattini argument it follows that a Sylow *p*-subgroup of G/K is cyclic, for any $p \in \{5, 7, 11, 13, 17, 19\}$. Assume that 19 ∈ π(\widetilde{G}). Let $g \in \overline{G}$, |g| = 19 and the image of g in \widetilde{G} is not trivial. Since 19 ∉ π($Out(S_i)$) for all $1 \le i \le n$, we obtain that there exists $1 \le i \le n$ such that $S_i^g \ne S_i$. By [13], for all non-Abelian finite simple groups R with the property $π(R) \subseteq \{2, 3, 5, 7, 11, 13, 17, 19, 23\}$, we have $\{5, 7, 11, 13, 17\} ∩ π(R) \ne Ø$. Let $p \in \{5, 7, 11, 13, 17\} ∩ π(S_i)$. Then a Sylow *p*-subgroup P of \overline{G} is not cyclic; a contradiction. Thus $19 \in π(S)$. It is easy to see that $17 \in π(S)$. Since $19 \cdot 17 \notin ω$ we obtain that there exists S_i such that $19, 17 \in π(S_i)$. We have that a Sylow *t*-subgroup of S_i must be cyclic for all $t \in \{5, 7, 11, 13, 17\} ∩ π(S_i)$. By [13] and [14] it follows that there are no such groups.

Lemma 28. The group S is a finite simple group.

Proof. Let $\overline{G} = G/K$, $\widetilde{G} = \overline{G}/S$. Suppose that n > 1. From Lemma 27 we have 23 ∈ π(\overline{G}). Suppose that 23 ∈ π(\widetilde{G}). Then there exists $g \in \overline{G}$ such that |g| = 23 and g acts by conjugation on S and induces an outer automorphism. It follows by Lemma 1 that $g \in Out(S_i)$ or $S_i^g \neq S_i$. By [13], for all non-Abelian finite simple groups R with the property π(R) ⊆ {2,3,5,7,11,13,17,19,23}, we have {5,7,11,13,17} ∩ π(R) ≠ Ø. Suppose that there exists $1 \le i \le n$ such that $S_i^g = S_i$, we can assume that i = 1. By Lemma 5, g is not an outer automorphism of a group $S_j, j \in \{1, ..., n\}$. Hence $S_1 \le C_{\overline{G}}(g)$ and so \overline{G} has an element whose order is equal to 23t, where $t \in \{5, 7, 11, 13, 17\} ∩ π(S_1)$, but $23t \notin \omega$. Thus $S_1 \neq S_1^g$. Let $x = hh^g h^{g^2} ... h^{g^{p-1}}, h \in S_1, |h| \in \{5, 7, 11, 13, 17\} ∩ π(S_1)$. It is easy to check that $x \in C_{\overline{G}}(g), |x| = |h|$. Hence \overline{G} has an element x and |x| = 23|h|, but $23|h| \notin \omega$; a contradiction. Hence $23 \in \pi(S_i)$. If n > 1 then $23t \in \omega, t \in \{5, 7, 11, 13, 17\} ∩ \pi(S_j)$; contradiction.

From [13] and Lemma 3 it follows that S is isomorphic to one of the groups Fi_{23} , Alt_{23} , Alt_{24} , Alt_{25} , Alt_{26} , Alt_{27} , Alt_{28} .

Lemma 29. $S \not\simeq Fi_{23}$.

Proof. Suppose that $S \simeq Fi_{23}$. Since $19 \notin \pi(Fi_{23})$, we obtain $19 \in \pi(K)$. From Lemma 3, it follows that $11, 23 \notin \pi(K)$. From [16] we obtain that in S there exists a Frobenius group with kernel order 23 and complement of order 11. By Lemma 4 we have that $19 \cdot 11 \in \omega$ or $19 \cdot 23 \in \omega$; a contradiction.

Hence S contains a subgroup isomorphic to Alt_{23} .

Lemma 30. The set $\pi(K)$ has no elements greater than 7. In particular $S \neq Alt_{23}$.

Proof. Since $11 \cdot 13 \notin \omega(Aut(Alt_{23}))$, we see that if $S \simeq Alt_{23}$ then $\{11, 13\} \cap \pi(K) \neq M$ \varnothing . Suppose that in $\pi(K)$ there is a number $p \in \{11, 13, 17, 19\}$. Let H be a Hall $\{2,3\}'$ -subgroup of K. We can assume that $H \triangleleft G$ and $C_K(H) \leq H$. Since $23t \notin \omega$, for any $t \in \pi(H)$, then using Lemma 2 we see that H is nilpotent. Suppose that there exists $g \in G/H$, |g| = 23 and $K/H \leq C_{G/H}(g)$. From Lemma 4 it follows that in $23p \in \omega$; a contradiction. Thus any element of order 23 of G/H acts trivially on K/H and has no fixed points on H. Since S is a simple group, it follows that S is generated by elements of order 23. Thus (K/H). S is a central extension of K/H with S. Suppose that p = 11. Note that G/K contains Frobenius group with kernel of order 23 and complement of order 11. By Lemma 9 we see that $121 \in \omega$ or $253 \in \omega$; contradiction. Let $h \in G, |h| = 11$ and the image h of h in G/H is not trivial. Note that $C_{G/H}(\overline{h})$ contains a subgroup isomorphic to Alt_{10} or $2.Alt_{10}$. Since a Sylow 5-subgroup of Alt_{10} is elementary Abelian it follows that in $C_G(h)$ there exist elements of order 5p. Thus in G there exists element of order 55p; a contradiction. \square

Hence S has a subgroup isomorphic to Alt_{24} .

Lemma 31. 5,7 $\notin \pi(K)$. In particular $S \simeq Alt_{26}$ or $S \simeq Alt_{27}$.

Proof. We have $19 \cdot 7 \notin \omega(Aut(Alt_{25})) \supseteq \omega(Aut(Alt_{24}))$. Thus if $S \simeq Alt_{24}$ or Alt_{25} , then $7 \in \pi(K)$. Suppose that $p \in \{5,7\} \cap \pi(K) \neq \emptyset$. Let H be a Hall $\{2,3\}'$ -subgroup of K. We can assume that $H \lhd G$ and $C_K(H) \le H$. Since $23t \notin \omega$ for any $t \in \pi(H)$, using Lemma 2 we see that H is nilpotent. Suppose that there exists $g \in G/H$, |g| = 23 and $K/H \nleq C_{G/H}(g)$. From 4 it follows that $23p \in \omega$; a contradiction. Thus any element of order 23 of G/H acts trivially on K/H and has no fixed points on H. Since S is a simple group, it follows that S is generated by elements of order 23. Thus (K/H).S is a central extension of K/H with S. In G/H there exists a subgroup isomorphic to Alt_{12} or $2.Alt_{12}$. From the table of 5 and 7-modular characters of $Alt_{12}, 2.Alt_{13}, Alt_8, and 2.Alt_8$ (see [14]) it follows that G has an element of order 66pr, $r \in \{5,7\} \setminus \{p\}$; a contradiction. □

Lemma 32. $S \simeq Alt_{27}$.

Proof. Suppose that $S \simeq Alt_{26}$. We have $3 \cdot 5 \cdot 19 \notin \omega(Out(Alt_{26}))$. Since $5, 7 \notin \pi(K)$, it follows that $3 \in \pi(K)$, and $3 \in \pi(C_K(g))$, $g \in G, |g| = 19$. Let $C = C_G(g)$. We can assume that a Sylow 3-subgroup P of $C \cap K$ is normal in C and $3 \notin \pi((C \cap K)/P)$. In C/P there exists a Frobenius group R with kernel of order 7 and complement of order 3. From 9 it follows that $9 \in \omega(C)$ or $21 \in \omega(C)$. Thus $9 \cdot 19 \in \omega$ or $21 \cdot 19 \in \omega$; a contradiction.

Therefore, $S \simeq Alt_{27}$. By Lemma 6 it follows that the subgroup K is trivial. Hence $\omega(S) \neq \omega$ and $Aut(S) = Sym_{27}$, we see that $G \simeq Sym_{27}$. The proposition is proved.

8. Proof of Main Theorem and Corollaries

The theorem follows from Propositions 1–5. The corollary 1 follows from Proposition 2 and Lemma 8. The corollary 2 follows from Theorem and [1]–[6].

References

- [1] R. Brandl, W. Shi, Finite groups whose element orders are consecutive integers, J. Algebra, 143:2 (1991), 388-400. Zbl 0745.20022
- [2] C. E. Praeger, W. Shi, A characterization of some alternating and symmetric groups, Comm. Algebra, 22:5 (1994), 1507-1530. Zbl 0802.20016
- [3] V. D. Mazurov, Characterizations of finite groups by sets of orders of their elements, Algebra and Logic, 36:1 (1997), 23-32. Zbl 0880.20007
- [4] M. R. Darafsheh, A. R. Modhaddamfar, A characterization of some finite groups by their $element \ orders,$ Algebra Colloq, $7{:}4$ (2000), 467–476. Zbl 0969.20010
- [5] A. V. Zavarnitsine, Recognition by the set of element orders of symmetric groups of degree rand r+1 for prime r, Siberian Math. J., 43:5 (2002), 808-811. Zbl 1018.20004
- [6] I. B. Gorshkov, Recognizability of symmetric groups by spectrum, Algebra and Logic, 53:6 (2015), 450–457. Zbl 1320.20014
- [7] A. V. Zavarnitsine, Recognition of alternating groups of degrees r+1 and r+2 for prime r and the group of degree 16 by their element orders sets, Algebra and Logic, 39:6 (2000), 370-377. Zbl 0979.20020
- D. Gorenstein, Finite groups, Harper and Row, New York (1968). Zbl 0185.05701
- [9] A. V. Vasil'ev, On connection between the structure of a finite group and the properties of its prime graph, Siberian Math. J., 46:3 (2005), 396-404. Zbl 1096.20019
- [10] A. V. Vasil'ev, On finite groups isospectral to simple classical groups, J. Algebra, 423 (2015), 318-374. Zbl 1318.20017
- [11] I. A. Vacula, On the structure of finite groups isospectral to an alternating group, Proceedings of the Steklov Institute of Mathematics, 272:1 (supplement) (2011), 271-286.
- [12] V. D. Mazurov, The set of orders of elements in a finite group, Algebra and Logic, 33:1 (1994), 49-55. Zbl 0823.20024
- [13] A. V. Zavarnitsine, Finite simple groups with narrow prime spectrum, Siberian electronic mathematical reports, 6 (2009), 1–12. Zbl 1289.20021
- [14] The GAP Group, GAP Groups, algorithms, and programming. Version 4.4. 2004 (http://www.gap-system.org).
- [15] A. S. Kleshchev, A. A. Premet, On second degree cohomology of symmetric and alternating groups, Comm. Algebra, **21**:2 (1993), 583–600. Zbl 0798.20046
- [16] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups, Oxford: Clarendon Press, 1985. Zbl 0568.20001

ILYA BORISOVICH GORSHKOV

N. N. KRASOVSKII INSTITUTE OF MATHEMATICS AND MECHANICS,

16. S. Kovalevskaja St.

- 620990, Ekaterinburg, Russia,
- E-mail address: ilygor8@gmail.com

Alexandr Nikolaevich Grishkov

- INSTITUTO DE MATEMATICA E STATISTICA, UNIVERSIDADE DE SAO PAULO,
- R. do Matao, 1010 Vila Universitaria,

05508-090, SAO PAULO, BRASIL,

E-mail address: ilygor8@gmail.com