СИБИРСКИЕ ЭЛЕКТРОННЫЕ MATEMAТИЧЕСКИЕ ИЗВЕСТИЯ

Siberian Electronic Mathematical Reports

http://semr.math.nsc.ru

ON RECOGNITION BY SPECTRUM OF SYMMETRIC GROUPS

I.B. GORSHKOV, A.N. GRISHKOV

Abstract

The spectrum of a group is the set of its element orders. A finite group G is said to be recognizable by spectrum if every finite group with the same spectrum is isomorphic to G. We prove that if $n \in\{15,16,18,21,27\}$ then symmetric groups $S y m_{n}$ are recognizable by spectrum.

Keywords: finite group, simple group, symmetric group, spectrum of a group, recognizability by spectrum.

1. Introduction

Let G be a finite group, $\pi(G)$ be the set of prime divisors of its order, $\omega(G)$ be the spectrum of G, i.e. the set of its element orders. The Gruenberg-Kegel graph, or the prime graph, $G K(G)$ is defined as follows. The vertex set of the graph is $\pi(G)$. Two distinct primes p and q of $\pi(G)$ seen as verticies of the graph $G K(G)$, are connected by an edge if and only if $p q \in \omega(G)$. A group G is said to be recognizable by spectrum (shortly, recognizable) if for every finite group L the equality $\omega(L)=\omega(G)$ implies that $L \simeq G$. Two groups are said to be isospectral if they have the same spectra. Denote the symmetric group of degree n by Sym_{n}.

It was proved in $[1,2,3,4]$ that if $n \in\{2,3,4,5,6,7,8,9,11,12,13,14\}$ then the group $S y m_{n}$ is recognizable. It was shown in [5] that $S y m_{p}$ is recognizable where p is a prime and $p>13$, there were also obtained strong constraints on a group with the same spectrum as $S y m_{p+1}$. It was shown in [6] that $S y m_{n}$ is recognizable if $n \notin\{2,3,4,5,6,8,10,15,16,18,21,27,33,35,39,45\}$, there it was also proved

[^0]that if $S y m_{16}$ is recognizable then the groups $S y m_{33}, S y m_{35}, S y m_{39}, S y m_{45}$ are recognizable too.

In this paper we prove recognizability of the symmetric groups

$$
\text { Sym }_{n}, \quad n \in\{15,16,18,21,27\} .
$$

Theorem 1. The group $S y m_{n}$, where $n \in\{15,16,18,21,27\}$, is recognizable.
Corollary 1. The group $S y m_{n}$, where $n \in\{33,35,39,45\}$, is recognizable.
Corollary 2. The recognizability problem for Sym $_{n}, n \neq 10$, is solved.

2. Preliminaries

Lemma 1 ([7, Lemma 2.2]). Let $S=P_{1} \times \ldots \times P_{r}$, where P_{i} are isomorphic nonAbelian simple groups. Then $\operatorname{Aut}(S) \simeq\left(\operatorname{Aut}\left(P_{1}\right) \times \ldots \times \operatorname{Aut}\left(P_{r}\right)\right)$. Sym $_{r}$.
Lemma 2 ([8, Theorem 3.1]). Given a Frobenius group G with kernel A and complement B, we have
(a) A is nilpotent;
(b) every Sylow p-subgroup of B is a cyclic group for an odd prime p, and a cyclic or generalized quaternion group for $p=2$.
Lemma 3 ([9, Proposition 1]). Let G be a finite group, $t(G) \geq 3$, and let K be the maximal normal soluble subgroup of G. Then for every subset ρ of primes in $\pi(G)$ such that $|\rho| \geq 3$ and all primes in ρ are pairwise nonadjacent in $G K(G)$, the intersection $\pi(K) \cap \rho$ contains at most one number. In particular, G is insoluble.
Lemma 4 ([10, Lemma 3.6]). Let s and p be distinct primes, a group H be a semidirect product of a normal p-subgroup T and a cyclic subgroup $C=\langle g\rangle$ of order s, and let $[T, g] \neq 1$. Suppose that H acts faithfully on a vector space V of positive characteristic t not equal to p. If the minimal polynomial of g on V does not equal $x^{s}-1$, then
(i) $C_{T}(g) \neq 1$;
(ii) T is non-Abelian;
(iii) $p=2$ and $s=2^{2^{\delta}}+1$ is a Fermat prime.

Lemma 5 ([11, Lemma 14]). Any odd element from $\pi(\operatorname{Out}(P))$ where P is any simple group, either belongs to the spectrum of P or does not exceed $m / 2$, where $m=\max _{p \in \pi(P)} p$.
Lemma 6 ([5, Lemma 6]). Let H be a finite group and let V be a proper normal subgroup of H such that H / V is isomorphic to Alt $_{m}$. Then $\omega(H) \nsubseteq \omega\left(\right.$ Sym $\left._{m}\right)$ provided that $m \geq 6$ and $m \neq 8$.

Lemma 7 ([5]). Recognizability of the symmetric group of degree $r+1$, where $r \geq 17$ is prime, amounts to the following: for every proper covering $G=N . A$ of an arbitrary finite group N by a group A isomorphic to $S y m_{r}$ or $A l t_{r}$, the inequality $\omega(G) \neq \omega\left(\right.$ Sym $\left._{r+1}\right)$ holds.

Lemma 8 ([6, Theorem 2]). If Sym ${ }_{16}$ is recognizable then the groups

$$
\text { Sym }_{33}, \text { Sym }_{35}, \text { Sym }_{39}, \text { Sym }_{45}
$$

are recognizable too.

Lemma 9 ([12, Lemma 1]). If a Frobenius group FC with kernal F and cyclic complement $C=\langle c\rangle$ of order n acts faithfully on a vector space V of nonzero characteristic p coprime with the order of F then the natural semidirect product $V C$ contains an element of order $p \cdot n$.

3. Proof of Main Theorem for Sym $_{15}$

Proposition 1. The group $S y m_{15}$ is recognizable.
Let $\omega=\omega(G)=\omega\left(\right.$ Sym $\left._{15}\right), K$ be the maximal normal soluble subgroup of G, $S=\operatorname{Soc}(G / K) \simeq S_{1} \times \ldots \times S_{n}$, where $S_{i}, 1 \leq i \leq n$ are non-Abelian simple groups. Obviously, the prime divisors of $|S|$ are not greater than 13 . Using the classification of finite simple groups it is not hard to obtain the full list of all finite simple groups L with the property $\pi(L) \subseteq\{2,3,5,7,11,13\}$ (see [13]).

Lemma 10. The group S is a finite simple group.
Proof. Let $\bar{G}=G / K, \widetilde{G}=\bar{G} / S$. Obviously, $\bar{G} \leq \operatorname{Aut}(S)$ and $\widetilde{G} \leq O u t(S)$. Suppose that $n>1$. By Lemma 3 we may assume that there exists $p \in\{11,13\}$ such that $p \notin \pi(K)$. Suppose that $|\widetilde{G}|$ is divisible by p. Then \bar{G} contains an element g of order p that acts by conjugation on S and induces an outer automorphism. We have $\operatorname{Out}(S) \simeq \operatorname{Out}\left(P_{1}\right) \times \ldots \times \operatorname{Out}\left(P_{r}\right)$, where the groups P_{j} are direct products of isomorphic S_{i}. For some j, therefore, $g \in \operatorname{Out}\left(P_{j}\right)$. It follows by Lemma 1 that $g \in \operatorname{Out}\left(S_{i}\right)$ or $S_{i}^{g} \neq S_{i}$. By [13], for all non-Abelian finite simple groups R with the property $\pi(R) \subseteq\{2,3,5,7,11,13\}$ except for $R \simeq L_{3}(3)$, we have $\{5,7\} \cap \pi(R) \neq \varnothing$. Assume that there exists $1 \leq i \leq n$ such that $S_{i} \not \not ㇒ L_{3}(3)$, we can assume that $i=1$. Suppose that $S_{1}^{g}=\overline{S_{1}}$. By Lemma $5, g$ is not an outer automorphism of a group $S_{j}, j \in\{1, \ldots, n\}$. Hence $S_{1} \leq C_{\bar{G}}(g)$ and so \bar{G} has an element whose order is equal to $p t$, where $t \in\{5,7\} \cap \pi\left(S_{1}\right\}$, but pt $\notin \omega$. Thus $S_{1} \neq S_{1}^{g}$. Let $x=h h^{g} h^{g^{2}} \ldots h^{g^{p-1}}, h \in S_{1},|h| \in\{5,7\} \cap \pi\left(S_{1}\right)$. It is easy to check that $x \in C_{\bar{G}}(g)$, $|x|=|h|$. Hence \bar{G} contains an element y and $|y|=p|h|$, but $p|h| \notin \omega$ and so $S_{i} \simeq L_{3}(3)$ for all $1 \leq i \leq n$. We have $\{3,13\} \subset \pi\left(L_{3}(3)\right)$. The group S has an element of order 39 , since $n>1$, but $39 \notin \omega$. Thus $p \in \pi(S)$.

Suppose that there exists S_{i} such that $13 \in \pi\left(S_{i}\right)$. By [13], for all non-Abelian finite simple groups R with the property $\pi(R) \subseteq\{2,3,5,7,11,13\}$, we have $\{3,5\} \cap$ $\pi(R) \neq \varnothing$. Let $g \in S_{i},|g|=13, h \in S_{j}, i \neq j,|h| \in\{3,5\} \cap \pi\left(S_{j}\right)$. Then $|g h|=13|h|$, but $13|h| \notin \omega$. Hence $11 \in \pi(S)$. It is easy to check that there exists $x \in S$ and $|x|=11 t$, where $t \in\{5,7\} \cap \pi(S)$; a contradiction. Then $n=1$.

By Lemma 10, we may assume that S is a non-Abelian finite simple group and $\pi(S) \subseteq\{2,3,5,7,11,13\}$.

Lemma 11. 11, $13 \in \pi(S)$.
Proof. Assume that $13 \notin \pi(S)$. It follows from Lemmas 3, 5 and $[14]$ that $\{5,7,11\} \subseteq$ $\pi(S),\{5,7,11\} \cap \pi(|G| /|S|)=\varnothing$. By Lemmas 5 and 10 we have $13 \in \pi(K)$. Hence $35 \in \omega(S)$. From [13] and [14], it follows that $S \simeq A l t_{12}$. Note that S contains a subgroup T isomorphic to a Frobenius group with kernel of order 11 and complement of order 5. Let $P \in \operatorname{Syl}_{13}(K), N=N_{G}(P)$. Since $N_{G}(P) / N_{K}(P) \simeq$ $G / K,\{5,11\} \cap \pi(K)=\varnothing$ and the Schur-Zassenhaus theorem, we see that there exists $\widetilde{T} \leq N$ such that $\widetilde{T} \simeq T$. Let $\bar{N}=N / \Phi(P)$ and \bar{T} isomorphic to T. From

Lemma 4 it follows that \bar{N} contains an element of order $13 t$, where $t \in\{5,11\}$, but $\omega(\bar{N}) \subseteq \omega$; a contradiction.

Assume that $11 \notin \pi(S)$. It follows from Lemma 3 that $\{5,7,13\} \subseteq \pi(S)$ and $\{5,7,13\} \cap \pi(|G| /|S|)=\varnothing$. Hence $35 \in \omega(S)$. By [13] and [14], there are no such groups.

From [13] and Lemma 11 it follows that S is isomorphic to one of the groups $L_{5}(3), L_{6}(3), A l t_{13}, A l t_{14}, A l t_{15}, A l t_{16}, S u z, F i_{22}$.
Lemma 12. $S \notin\left\{L_{5}(3), L_{6}(3), A l t_{16}, F i_{22}\right\}$.
Proof. Note that $121 \in \omega\left(L_{5}(3)\right) \backslash \omega \subseteq \omega\left(L_{6}(3)\right), 16 \in \omega\left(F i_{22}\right) \backslash \omega, 63 \in \omega\left(\right.$ Alt $\left._{16}\right) \backslash \omega$. Hence $S \notin\left\{L_{5}(3), L_{6}(3), A l t_{16}, F i_{22}\right\}$.

Thus the group S is isomorphic to one of the groups $A l t_{13}, A l t_{14}, S u z$ or $A l t_{15}$. Assume that $S \in\left\{A l t_{13}, A l t_{14}, S u z\right\}$.
Lemma 13. $11,13 \notin \pi(K)$.
Proof. Suppose that $\pi(K) \cap\{11,13\} \neq \varnothing$. Let $p \in \pi(K) \cap\{11,13\}, H=O_{p^{\prime}}(K)$. There exists a normal p-subgroup T in a group G / H. Since $5 p \notin \omega(G)$, we have a group have a Frobenius group $T M$ with kernal T and complement $M \in \operatorname{Syl}_{5}(G / H)$. From Lemma 2 it follows that M is cyclic. But $N \in \operatorname{Syl}_{5}(S)$ is elementary Abelian group of order 25 and $N \leq M /(M \cap(K / H))$; a contradiction.
Lemma 14. 5, $7 \notin \pi(K)$.
Proof. Suppose that $\pi(K) \cap\{5,7\} \neq \varnothing$. Let $p \in \pi(K) \cap\{5,7\}, H$ be a Hall $\{3,5,7\}$ subgroup of K. Since $N_{G}(H) / N_{K}(H) \simeq G / K$ and $\omega\left(N_{K}(H)\right) \subseteq \omega$, we may assume that $H \triangleleft G$. Since $13 t \notin \omega$ for $t \in\{3,5,7\}$, Lemma 2 implies that H is nilpotent. Let $\widetilde{G}=G / O_{2}(K), \widetilde{K}=K / O_{2}(K), T \in \operatorname{Syl}_{2}(\widetilde{K})$. Assume that exists $g \in \widetilde{G},|g|=13$ and g acts on T nontrivially. From Lemma 4 , it follows that in \widetilde{G} there is a element of order $13 p$, but $13 p \notin \omega$. Hence if $g \in N_{\widetilde{G}}(T),|g|=13$, then $g \in C_{\widetilde{G}}(T)$. The group S is generated by elements of order 13 . Thus T.S is a central extension of T with S. Therefore $\widetilde{G} / \widetilde{H}$ contains a subgroup isomorphic to one of the groups $A l t_{13}, 2 . A l t_{13}, S u z, 2 . S u z$. From the tables of 5 and 7 -modular characters of $A l t_{13}$, 2. $A l t_{13}, S u z$, and $2 . S u z$ (see [14]), it follows that G has an element of order $11 p$, but $11 p \notin \omega(G)$; a contradiction.
Lemma 15. $2,3 \in \pi(K)$.
Proof. Since $13 \cdot 2 \in \omega(G) \backslash \omega(\operatorname{Aut}(S))$ and $13 \notin \pi(K)$, we have $2 \in \pi(K)$. Since $7 \cdot 5 \cdot 3 \notin \omega(\operatorname{Aut}(S))$ and $\{5,7\} \cap \pi(K)=\varnothing$, we have $3 \in \pi(K)$.

Lemma 16. $S \notin\left\{A l t_{13}, A l t_{14}, S u z\right\}$.
Proof. By Lemmas 13,14 and $15, \pi(K)=\{2,3\}$. Put $R_{0}=1, R_{1}=O_{2}(G), R_{2}=$ $O_{2,3}(G), R_{3}=O_{2,3,2}(G)$, and so forth. For some n, we have $R_{n}=K$ for the first time, and it is obvious that $n \geq 2$. Put $\bar{G}=G / R_{n-2}$ and $\bar{K}=K / R_{n-2}$. Then \bar{K} is a group in which the Sylow p-subgroup for $p=2$ or 3 is normal. Suppose that $p=2$. Then $\widetilde{G}=G / R_{n-1}$ possesses a nontrivial normal 3-subgroup $\widetilde{K}=K / R_{n-1}$. Note that $\widetilde{G} / \widetilde{K}$ contains a subgroup T isomorphic to one of the groups $A l t_{13}, S u z$. Since $39 \notin \omega$, the action of T on \widetilde{K} by conjugations is faithful. The table of 3 -modular characters of $S u z$ (see [14]) implies that $C_{\bar{K}}(g) \neq 1,|g|=13$. Hence $T \simeq A l t_{13}$. The
table of 3-modular characters of $A l t_{13}$ (see [14]) implies that every chief factor of G lying in \widetilde{K} is a 12-dimensional irreducible representation over a field of characteristic 3 , in which the dimension of the space of fixed points of elements of order 11 is equal to 2 . Since there is a complement to \widetilde{K} in \widetilde{G} (see [15]), it follows that $A l t_{13}$ acts on $P=R_{n-1} / R_{n-2}$. It is clear from the table of 2-modular characters of $A l t_{13}$ (see [14]) that $C_{P}(x) \neq 1$ for an element $x \in A l t_{13}$ of order 11. Thus $C_{\bar{K}}(x)$ is an extension of a nontrivial 2 -group by a 3 -group of rank at least 2 , and thus it contains an element of order 6 . By the choice of x we deduce that G contains an element of order 66 ; thus $p=3$. In this case $T=R_{n-1} / R_{n-2}$ is a 3 -group which contains its centralizer in $\widetilde{K}=K / R_{n-1}$. Assume that there exists $g \in \widetilde{G},|g|=13$, and g acts on \widetilde{K} nontrivially. From Lemma 4 , it follows that $39 \in \omega(\bar{G})$, but $39 \notin \omega$. The group S is generated by 13 -elements. Thus the group \widetilde{G} contains a subgroup isomorphic to $\widetilde{K} \times S$ or $H \times(2 . S)$, for some group H. Let us show that in the second case \widetilde{K} is of order 2 . Since G contains no elements of order $4 \cdot 13$, it follows that \widetilde{K} is of period 2. If \widetilde{K} is noncyclic then $C_{T}(\widetilde{y}) \neq 1$ for some \widetilde{y} in \widetilde{K}. As above, an element of \widetilde{G} of order 11 centralizes in $C_{T}(\widetilde{y})$ some nontrivial element, and consequently G contains an element of order 66; a contradiction. Put $N=2 . S$ if $\widetilde{G}=2 . S$, and $N=S$ if $\widetilde{G}=\widetilde{K} \times S$. In each case, since \bar{G} contains no elements of order $8 \cdot 7$, while G must, it follows that $R_{n-2} \neq 1$. The table of 3 -modular characters (see [14]) implies that N acts trivially on \bar{K}. Furthermore, as in the case $p=2$, we deduce that for elements x of N of order 11 the group $C_{R_{n-1} / R_{n-3}}(x)$ contains an element of order 22 . Thus G contains an element of order 66; this is a contradiction.

Therefore $S \simeq A l t_{15}$. By Lemma 6 it follows that the subgroup K is trivial. Since $\omega(S) \neq \omega$ and $\operatorname{Aut}(S)=S y m_{15}$, we see that $G \simeq S y m_{15}$. The proposition is proved.

4. Proof of Main Theorem for $S^{\prime} m_{16}$

Proposition 2. The group $S y m_{16}$ is recognizable.
Let $\omega=\omega(G)=\omega\left(\right.$ Sym $\left._{16}\right), K$ be the maximal normal soluble subgroup of G, $S=\operatorname{Soc}(G / K) \simeq S_{1} \times \ldots \times S_{n}$, where $S_{i}, 1 \leq i \leq n$ are non-Abelian simple groups. Obviously, the prime divisors of $|S|$ are not greater than 13. Using the classification of finite simple groups it is not hard to obtain the full list of all finite simple groups L with the property $\pi(L) \subseteq\{2,3,5,7,11,13\}$ (see [13]).

Lemma 17. $13 \notin \pi(K)$.
Proof. Let $\bar{G}=G / K, \widetilde{G}=\bar{G} / S$. Suppose that $13 \in \pi(K)$. Then, from Lemma 3 we have $\{7,11\} \cap \pi(K)=\varnothing$. Let $p \in\{5,7,11\}$. Using Frattini argument we can obtain that in $G / O_{13^{\prime}}(K)$ there exists a subgroup T.P such that T is isomorphic to Sylow 13-subgroup of K and P is isomorphic to Sylow p-subgroup of G / K. By Lemma 2 it follows that P and Sylow p-subgroups of the group G / K are cyclic of order p. Suppose that $11 \in \pi(\widetilde{G})$. Let $g \in \bar{G},|g|=11$ and the image of g in \widetilde{G} is not trivial. Since $11 \notin \pi\left(\operatorname{Out}\left(S_{i}\right)\right)$ for all $1 \leq i \leq n$, we have $S_{i}^{g} \neq S_{i}$ for some i. The order of any non-Abelian finite simple group R with property $\pi(R) \subseteq\{2,3,5,7,11,13\}$ is divisible by 5,7 or 13 (see [13]). Suppose that $p \in\{5,7\} \cap \pi\left(S_{i}\right)$. Then the Sylow p subgroups of group \bar{G} are non-cyclic. Hence $\{5,7\} \cap \pi\left(S_{i}\right)=\varnothing$. From [13] it follows that $S_{i} \simeq L_{3}(3)$ and $13 \in \pi\left(S_{i}\right)$. In the same way as in proof of Lemma 10, we
obtain that in \bar{G} there is element of order $13 \cdot 11$, but $13 \cdot 11 \notin \omega$. Thus $11 \in \pi(S)$. It is easy to prove that $7 \in \pi(S)$. Since $77 \notin \omega$ it follows that there exists S_{i} such that $7,11 \in \pi\left(S_{i}\right)$. From [13] and the fact that the Sylow 5,7 and 11-subgroups of S are cyclic, we see that $S_{i} \simeq M_{22}$ or $U_{6}(2)$. Since $\{5,7,11\} \subseteq \pi\left(S_{i}\right)$, we have $S \simeq S_{i}$. From [16] we have $R<L_{2}(11)<M_{22}<U_{6}(2)$, where R is a Frobenius group with kernel of order 11 and complement of order 5 . Let T be a Hall $\{13,5\}$ subgroup of K. Using the Frattini argument we obtain that G contains a section isomorphic to T.R. From Lemma 4 it follows that $65 \in \omega(T . R)$ or $143 \in \omega(T . R)$; a contradiction.

Lemma 18. The group S is a finite simple group.
Proof. Let $\bar{G}=G / K, \widetilde{G}=\bar{G} / S$. Suppose that $n>1$. From Lemma 17 we have $13 \in \pi(\bar{G})$. By Lemma 3, it follows that there exists $p \in\{7,11\} \cap \pi(\bar{G})$. Suppose that $13 \in \pi(\widetilde{G})$. Then there exists $g \in \bar{G}$ such that $|g|=13$ and g acts by conjugation on S and induces an outer automorphism. By [13], for all non-Abelian finite simple groups R with property $\pi(R) \subseteq\{2,3,5,7,11,13\}$ except when $R \simeq L_{3}(3)$, we have $\{5,7\} \cap \pi(R) \neq \varnothing$. Assume that there exists $1 \leq i \leq n$ such that $S_{i} \nsim L_{3}(3)$, we can assume that $i=1$. Suppose that $S_{1}^{g}=S_{1}$. By Lemma $5, g$ is not an outer automorphism of a group $S_{j}, j \in\{1, \ldots, n\}$. Hence $S_{1} \leq C_{\bar{G}}(g)$ and so \bar{G} has an element of order pt, where $t \in\{5,7\} \cap \pi\left(S_{1}\right\}$, but pt $\notin \omega$. Thus $S_{1} \neq S_{1}^{g}$. Let $x=h h^{g} h^{g^{2}} \ldots h^{g^{p-1}}, h \in S_{1},|h| \in\{5,7\} \cap \pi\left(S_{1}\right)$. It is easy to check that $x \in C_{\bar{G}}(g)$, $|x|=|h|$. Hence \bar{G} has an element x such that $|x|=p|h|$, but $p|h| \notin \omega$ and so $S_{i} \simeq L_{3}(3)$ for all $1 \leq i \leq n$. Since $p \notin \pi\left(L_{3}(3)\right)$, it follows that $p \in \pi(\widetilde{G})$. It is easy to check that $13 p \in \omega(\bar{G})$; a contradiction. Hence $13, p \in \pi\left(S_{i}\right)$. If $n>1$ then $\{65,91,143\} \cap \omega(\bar{G}) \neq \varnothing$; a contradiction.

From [13], Lemmas 17 and 3 it follows that S is isomorphic to one of the groups $L_{2}(13), L_{2}(27), G_{2}(3),{ }^{3} D_{4}(2), S z(8), L_{2}(64), U_{4}(5), L_{3}(9), S_{6}(3), O_{7}(3), O_{8}^{+}(3)$, $G_{2}(4), S_{4}(8), L_{5}(3), L_{6}(3), A l t_{13}, A l t_{14}, A l t_{15}, A l t_{16}, S u z, F i_{22}$.
Lemma 19. $S \notin\left\{L_{2}(64), U_{4}(5), L_{5}(3), L_{6}(3), L_{3}(9), S_{4}(8)\right\}$.
Proof. Note that $65 \in \omega\left(L_{2}(64)\right) \backslash \omega, 52 \in \omega\left(U_{4}(5)\right) \backslash \omega, 121 \in \omega\left(L_{5}(3)\right) \backslash \omega \subseteq$ $\omega\left(L_{6}(3)\right), 91 \in \omega\left(L_{3}(9)\right) \backslash \omega, 65 \in \omega\left(S_{4}(8)\right) \backslash \omega$; a contradiction.

Lemma 20. $S \notin \Omega=\left\{L_{2}(13), L_{2}(27), G_{2}(3),{ }^{3} D_{4}(2), S z(8), S_{6}(3), O_{7}(3), O_{8}^{+}(3)\right.$, $\left.G_{2}(4), A l t_{13}, A l t_{14}, A l t_{15}\right\}$.

Proof. Groups from Ω have no elements of order 55 (see [14]), it follows that $\{5,11\} \cap$ $\pi(K) \neq \varnothing$. From [16] we have that in the groups $G_{2}(3), O_{7}(3), O_{8}^{+}(3), G_{2}(4)$ there exists a subgroup isomorphic to $L_{2}(13)$, in the group $S_{6}(3)$ there exists a subgroup isomorphic to $L_{2}(27)$, in the groups $A l t_{14}, A l t_{15}$ there exists a subgroup isomorphic Alt $_{13}$. Thus to prove the Lemma, it suffices to prove that $\omega(K . L) \backslash \omega(G) \neq \varnothing$ where $L \in\left\{L_{2}(13), L_{2}(27),{ }^{3} D_{4}(2), S z(8), A l t_{13}\right\}$, there exists an element g and $|g| \notin \omega$.

Let $p \in \pi(K) \cap\{11,5\}, P \in \operatorname{Syl}_{p}(K)$. Without loss of generality it can be assumed that $P \triangleleft G$ and $C_{K}(P) \leq P$. Suppose that in G / P there exists an element g of order 13 and $K / P \not \leq C_{G / P}(g)$. From Lemma 4 it follows that G contains element of order $13 p$, but $13 p \notin \omega$; a contradiction. Since for all elements $x \in G / P$ of order 13 we have that x acts trivially on K / P and has no fixed point on P. Since S is a simple group, we see that all elements of order 13 generated S. Therefore, $(K / P) . S$
is a central extension of K / P with S. Note that $(K / P) . S$ contains a subgroup S or the Schur multiplier of S.

Suppose that $S \in\left\{L_{2}(27),{ }^{3} D_{4}(2), S z(8)\right\}$. From the tables of characters of S and the Schur multiplier it follows that G has an element of order $13 p$, but $13 p \notin \omega(G)$; contradiction.

Suppose that $S \simeq L_{2}(13)$. Since $11 \notin \pi(S)$, we can assume that $p=11$. From the tables of characters of S and the Schur multiplier it follows that G has an element of order $13 \cdot 11$ or $7 \cdot 11$; contradiction.

Therefore, $S \simeq A l t_{13}$. From the tables of 5 and 11-modular characters of $A l t_{13}$ and $2 . A l t_{13}$ (see [14]) it follows that the element of order 13 acts with no fixed points only on the 12-dimensional permutation module, but in this case centralizes of an element of order 18 is nontrivial and hence $18 p \in \omega$; a contradiction.

Therefore, $S \simeq A l t_{16}$. By Lemma 6 it follows that the subgroup K is trivial. Hence $\omega(S) \neq \omega$ and $\operatorname{Aut}(S)=S y m_{16}$ we see that $G \simeq S y m_{16}$. The proposition is proved.

5. Proof of Main Theorem for $S_{y} m_{18}$

Proposition 3. The group $S_{18} m_{18}$ is recognizable.
From Lemma 7 it follows that if $\omega(G)=\omega\left(\right.$ Sym $\left._{18}\right)$ where $G \nsucceq S y m_{18}$, then $G \simeq K . A l t_{17}$ or $K . S_{y m} m_{17}$ where K is a soluble group. Since $17 t \notin \omega$, for all $t \in \pi(K)$, using Lemma 2 we can see that K is nilpotent. Since $77 \notin \omega\left(S_{y m} m_{17}\right)$ we obtain $\{7,11\} \cap \pi(K) \neq \varnothing$. Let $p \in\{7,11\} \cap \pi(K), P \in \operatorname{Syl}_{p}(K)$. We can assume that $K \simeq P$. From the tables of 7 and 11-modular characters of $A l t_{14}$ (see [14]) it follows that G has an element g of order $p t, t \in\{7,11\} \backslash\{p\}$. Note that R. Alt $_{6} \leq C_{G}\left(g^{p}\right)$ where R is a p-group. From the tables of 7 and 11-modular characters of $A l t_{6}$ (see [14]) it follows that $C_{G}(g)$ has an element of order $3 t$. Hence $3 \cdot 7 \cdot 11 \in \omega(G)$; a contradiction. Therefore, $G \simeq S y m_{18}$. The proposition is proved.

6. Proof of Main Theorem for Sym $_{21}$

Proposition 4. The group $S y m_{21}$ is recognizable.
Let $\omega=\omega(G)=\omega\left(\right.$ Sym $\left._{21}\right), K$ be the maximal normal soluble subgroup of G, $S=\operatorname{Soc}(G / K) \simeq S_{1} \times \ldots \times S_{n}$, where $S_{i}, 1 \leq i \leq n$ are non-Abelian simple groups. Obviously, the prime divisors of $|S|$ are not greater then 19. Using the classification of finite simple groups it is not hard to obtain a full list of all finite simple groups L with $\pi(L) \subseteq\{2,3,5,7,11,13,17,19\}$ (see [13]).

Lemma 21. The group S is a finite simple group.
Proof. Let $\bar{G}=G / K, \widetilde{G}=\bar{G} / S$. Obviously $\bar{G} \leq A u t(S)$ and $\widetilde{G} \leq O u t(S)$. Suppose that $n>1$. By Lemma 3 we may assume that there exists $p \in\{17,19\}$ and $p \notin$ $\pi(K)$. Suppose that $|\widetilde{G}|$ is divisible by p. Then \bar{G} contains an element g of order p that acts by conjugation on S and induces an outer automorphism. By Lemma $5, g$ is not an outer automorphism of a group $S_{i}, 1 \leq i \leq n$. By [13], for all non-Abelian finite simple groups R with property $\pi(R) \subseteq\{2,3,5,7,11,13,17,19\}$ except when $R \simeq L_{2}(17)$, we have $\{5,7,13\} \cap \pi(R) \neq \varnothing$. Assume that there exists $1 \leq i \leq n$ such that $S_{i} \nsim L_{2}(17)$, we can assume that $i=1$. Suppose that $S_{1}^{g}=S_{1}$. Hence $S_{1} \leq C_{\bar{G}}(g)$ and so \bar{G} has an element whose order is equal to $p t$, where
$t \in\{5,7,13\} \cap \pi\left(S_{1}\right\}$, but $p t \notin \omega$. Thus $S_{1} \neq S_{1}^{g}$. Let $x=h h^{g} h^{g^{2}} \ldots h^{g^{p-1}}, h \in$ $S_{1},|h| \in\{5,7,13\} \cap \pi\left(S_{1}\right)$. It is easy to check that $x \in C_{\bar{G}}(g),|x|=|h|$. Hence \bar{G} has an element x such that $|x|=p|h|$, but $p|h| \notin \omega$ and so $S_{i} \simeq L_{2}(17)$ for all $1 \leq i \leq n$. We have $\{9,17\} \subset \omega\left(L_{2}(17)\right)$. The group S has an element of order $9 \cdot 17$ since $n>1$, but $9 \cdot 17 \notin \omega$.

Thus $p \in \pi(S)$. Without loss of generality it can be assumed that $p \in \pi\left(S_{1}\right)$. It is easy to see that there exists $x \in S$ and $|x|=p t$, where $t \in\{5,7,9,13\} \cap \omega\left(S_{2}\right)$; a contradiction. Then $n=1$.

Lemma 22. $19 \in \pi(S)$.
Proof. Assume that $19 \notin \pi(S)$. Then $\{5,7,11,13,17\} \subset \pi(S)$ and

$$
\{7,13\} \cap \pi(|G| /|S|)=\varnothing
$$

Hence $7 \cdot 13 \in \omega(S)$. From [13] and [14] it follows that there are no such groups.
Lemma 23. $13,17 \in \pi(S)$.
Proof. Suppose that $17 \notin \pi(S)$. Then $\{11,13,19\} \subset \pi(S)$. From [13] it follows that there are no such groups.

Suppose that $13 \notin \pi(S)$. Then $\{11,17,19\} \subset \pi(S)$. From [13] and Lemmas 22 and 23 it follows that there are no such groups.

From [13] it follows that S is isomorphic to one of the groups

$$
A l t_{n}, 19 \leq n \leq 22,{ }^{2} E_{6}(2)
$$

Lemma 24. $S \nsim A l t_{22}$.
Proof. Note that $57 \in \omega\left(A l t_{22}\right)$ but ω has no such elements; contradiction.
Lemma 25. $S \not \not ㇒^{2} E_{6}(2)$.
Proof. Group ${ }^{2} E_{6}(2)$ have no elements of order 91 (see [14]), it follows that $\{7,13\} \cap$ $\pi(K) \neq \varnothing$. From [16] we have that in the group ${ }^{2} E_{6}(2)$ there exists a subgroup T isomorphic to $O_{8}^{-}(2)$.

Let $p \in \pi(K) \cap\{7,13\}, P \in \operatorname{Syl}_{p}(K)$. Without loss of generality it can be assumed that $P \triangleleft G$ and $C_{K}(P) \leq P$. Suppose that in G / P there exists an element g of order 17 and $K / P \not \leq C_{G / P}(g)$. From Lemma 4 it follows that G contains element of order $17 p$, but $17 p \notin \omega$; a contradiction. Hence for all elements $x \in G / P$ of order 17 we have that x acts trivially on K / P and has no fixed point on P. Since T is a simple group, we see that all elements of order 17 generated T. Therefore, $(K / P) \cdot T$ is a central extension of K / P with T. Note that $(K / P) \cdot T$ contains a subgroup T or the Schur multiplier of T. From the tables of p-modular characters of T and the Schur multiplier (see [14]), it follows that G has an element of order $17 p$, but $17 p \notin \omega(G)$; contradiction.

Lemma 26. $S \notin\left\{A l t_{19}, A l t_{20}\right\}$.
Proof. Let $S \in\left\{\right.$ Alt $\left._{19}, A l t_{20}\right\}, H$ be a Hall 2^{\prime}-subgroup of K. Since $13 \cdot 5 \cdot 3 \notin$ $\omega(\operatorname{Aut}(S))$, we see that H is not trivial. Without loss of generality it can be assumed that $H \triangleleft G$. Since $19 p \notin \omega, p \in \pi(H)$, by Lemma 2 the subgroup H is nilpotent. Note that there exists $R<S$ such that R is isomorphic to a Frobenius group with kernel order 19 and complement order 9 . Since $\pi(K / H) \subseteq\{2\}$, we see that R acts on H. If $\{3,13\} \cap \pi(H) \neq \varnothing$ then by Lemma 9 we obtain that H. R has an element
x and $|x| \in\{57,27,117,247\}$; a contradiction. Since $13 \cdot 5 \cdot 3,11 \cdot 7 \cdot 3 \notin \omega(G / K)$ we see that $\pi(H)=\{5,7\}$ or $\pi(H)=\{5,11\}$. From the table of 5 -modular characters of $A l t_{13}$ and $2 . A l t_{13}$ (see [14]) it follows that G has an element of order $11 \cdot 5 \cdot 7$; a contradiction.

Therefore, $S \simeq A l t_{21}$. By Lemma 6 it follows that K is trivial. Since $\omega(S) \neq \omega$ and $\operatorname{Aut}(S)=S y m_{21}$, we see that $G \simeq S y m_{21}$. The proposition is proved.

7. Proof of Main Theorem for Sym $_{27}$

Proposition 5. The group S_{27} is recognizable.
Let $\omega=\omega(G)=\omega\left(\right.$ Sym $\left._{27}\right), K$ be the maximal normal soluble subgroup of G, $S=\operatorname{Soc}(G / K) \simeq S_{1} \times \ldots \times S_{n}$, where $S_{i}, 1 \leq i \leq n$ are non-Abelian simple groups. Obviously, the prime divisors of $|S|$ are not greater then 23 . Using the classification of finite simple groups it is not hard to obtain a full list of all finite simple groups L with the property $\pi(L) \subseteq\{2,3,5,7,11,13,17,19,23\}$ (see [13]).
Lemma 27. $23 \notin \pi(K)$.
Proof. Let $\bar{G}=G / K, \widetilde{G}=\bar{G} / S$. Suppose that $23 \in \pi(K)$. From Lemma 3 we have $\{11,13,17,19\} \cap \pi(K)=\varnothing$. By Lemma 2 and the Frattini argument it follows that a Sylow p-subgroup of G / K is cyclic, for any $p \in\{5,7,11,13,17,19\}$. Assume that $19 \in \pi(\widetilde{G})$. Let $g \in \bar{G},|g|=19$ and the image of g in \widetilde{G} is not trivial. Since $19 \notin \pi\left(\operatorname{Out}\left(S_{i}\right)\right)$ for all $1 \leq i \leq n$, we obtain that there exists $1 \leq i \leq n$ such that $S_{i}^{g} \neq S_{i}$. By [13], for all non-Abelian finite simple groups R with the property $\pi(R) \subseteq\{2,3,5,7,11,13,17,19,23\}$, we have $\{5,7,11,13,17\} \cap \pi(R) \neq \varnothing$. Let $p \in\{5,7,11,13,17\} \cap \pi\left(S_{i}\right)$. Then a Sylow p-subgroup P of \bar{G} is not cyclic; a contradiction. Thus $19 \in \pi(S)$. It is easy to see that $17 \in \pi(S)$. Since $19 \cdot 17 \notin \omega$ we obtain that there exists S_{i} such that $19,17 \in \pi\left(S_{i}\right)$. We have that a Sylow t subgroup of S_{i} must be cyclic for all $t \in\{5,7,11,13,17\} \cap \pi\left(S_{i}\right)$. By [13] and [14] it follows that there are no such groups.

Lemma 28. The group S is a finite simple group.
Proof. Let $\bar{G}=G / K, \widetilde{G}=\bar{G} / S$. Suppose that $n>1$. From Lemma 27 we have $23 \in \pi(\bar{G})$. Suppose that $23 \in \pi(\widetilde{G})$. Then there exists $g \in \bar{G}$ such that $|g|=23$ and g acts by conjugation on S and induces an outer automorphism. It follows by Lemma 1 that $g \in O u t\left(S_{i}\right)$ or $S_{i}^{g} \neq S_{i}$. By [13], for all non-Abelian finite simple groups R with the property $\pi(R) \subseteq\{2,3,5,7,11,13,17,19,23\}$, we have $\{5,7,11,13,17\} \cap \pi(R) \neq \varnothing$. Suppose that there exists $1 \leq i \leq n$ such that $S_{i}^{g}=S_{i}$, we can assume that $i=1$. By Lemma $5, g$ is not an outer automorphism of a group $S_{j}, j \in\{1, \ldots, n\}$. Hence $S_{1} \leq C_{\bar{G}}(g)$ and so \bar{G} has an element whose order is equal to $23 t$, where $t \in\{5,7,11,13,17\} \cap \pi\left(S_{1}\right)$, but $23 t \notin \omega$. Thus $S_{1} \neq S_{1}^{g}$. Let $x=h h^{g} h^{g^{2}} \ldots h^{g^{p-1}}, h \in S_{1},|h| \in\{5,7,11,13,17\} \cap \pi\left(S_{1}\right)$. It is easy to check that $x \in C_{\bar{G}}(g),|x|=|h|$. Hence \bar{G} has an element x and $|x|=23|h|$, but $23|h| \notin \omega$; a contradiction. Hence $23 \in \pi\left(S_{i}\right)$. If $n>1$ then $23 t \in \omega, t \in\{5,7,11,13,17\} \cap \pi\left(S_{j}\right)$; contradiction.

From [13] and Lemma 3 it follows that S is isomorphic to one of the groups $F i_{23}$, $A l t_{23}, A l t_{24}, A l t_{25}, A l t_{26}, A l t_{27}, A l t_{28}$.
Lemma 29. $S \not 千 F i_{23}$.

Proof. Suppose that $S \simeq F i_{23}$. Since $19 \notin \pi\left(F i_{23}\right)$, we obtain $19 \in \pi(K)$. From Lemma 3, it follows that $11,23 \notin \pi(K)$. From [16] we obtain that in S there exists a Frobenius group with kernel order 23 and complement of order 11. By Lemma 4 we have that $19 \cdot 11 \in \omega$ or $19 \cdot 23 \in \omega$; a contradiction.

Hence S contains a subgroup isomorphic to $A l t_{23}$.
Lemma 30. The set $\pi(K)$ has no elements greater than 7. In particular $S \not \approx$ Alt $_{23}$.
Proof. Since $11 \cdot 13 \notin \omega\left(\operatorname{Aut}\left(\right.\right.$ Alt $\left.\left._{23}\right)\right)$, we see that if $S \simeq A l t_{23}$ then $\{11,13\} \cap \pi(K) \neq$ \varnothing. Suppose that in $\pi(K)$ there is a number $p \in\{11,13,17,19\}$. Let H be a Hall $\{2,3\}^{\prime}$-subgroup of K. We can assume that $H \triangleleft G$ and $C_{K}(H) \leq H$. Since $23 t \notin \omega$, for any $t \in \pi(H)$, then using Lemma 2 we see that H is nilpotent. Suppose that there exists $g \in G / H,|g|=23$ and $K / H \not \leq C_{G / H}(g)$. From Lemma 4 it follows that in $23 p \in \omega$; a contradiction. Thus any element of order 23 of G / H acts trivially on K / H and has no fixed points on H. Since S is a simple group, it follows that S is generated by elements of order 23. Thus $(K / H) . S$ is a central extension of K / H with S. Suppose that $p=11$. Note that G / K contains Frobenius group with kernel of order 23 and complement of order 11. By Lemma 9 we see that $121 \in \omega$ or $253 \in \omega$; contradiction. Let $h \in G,|h|=11$ and the image \bar{h} of h in G / H is not trivial. Note that $C_{G / H}(\bar{h})$ contains a subgroup isomorphic to $A l t_{10}$ or $2 . A l t_{10}$. Since a Sylow 5 -subgroup of $A l t_{10}$ is elementary Abelian it follows that in $C_{G}(h)$ there exist elements of order $5 p$. Thus in G there exists element of order $55 p$; a contradiction.

Hence S has a subgroup isomorphic to $A l t_{24}$.
Lemma 31. $5,7 \notin \pi(K)$. In particular $S \simeq A l t_{26}$ or $S \simeq A l t_{27}$.
Proof. We have 19•7 $\notin \omega\left(\operatorname{Aut}\left(A l t_{25}\right)\right) \supseteq \omega\left(\operatorname{Aut}\left(A l t_{24}\right)\right)$. Thus if $S \simeq A l t_{24}$ or Alt t_{25}, then $7 \in \pi(K)$. Suppose that $p \in\{5,7\} \cap \pi(K) \neq \varnothing$. Let H be a Hall $\{2,3\}^{\prime}$-subgroup of K. We can assume that $H \triangleleft G$ and $C_{K}(H) \leq H$. Since $23 t \notin \omega$ for any $t \in \pi(H)$, using Lemma 2 we see that H is nilpotent. Suppose that there exists $g \in G / H,|g|=23$ and $K / H \not 又 C_{G / H}(g)$. From 4 it follows that $23 p \in \omega$; a contradiction. Thus any element of order 23 of G / H acts trivially on K / H and has no fixed points on H. Since S is a simple group, it follows that S is generated by elements of order 23. Thus $(K / H) . S$ is a central extension of K / H with S. In G / H there exists a subgroup isomorphic to $A l t_{12}$ or $2 . A l t_{12}$. From the table of 5 and 7-modular characters of $A l t_{12}, 2 . A l t_{13}$, Alt $_{8}$, and $2 . A l t_{8}$ (see [14]) it follows that G has an element of order $66 p r, r \in\{5,7\} \backslash\{p\}$; a contradiction.

Lemma 32. $S \simeq A l t_{27}$.
Proof. Suppose that $S \simeq A l t_{26}$. We have $3 \cdot 5 \cdot 19 \notin \omega\left(\right.$ Out $\left(\right.$ Alt $\left.\left._{26}\right)\right)$. Since $5,7 \notin \pi(K)$, it follows that $3 \in \pi(K)$, and $3 \in \pi\left(C_{K}(g)\right), g \in G,|g|=19$. Let $C=C_{G}(g)$. We can assume that a Sylow 3-subgroup P of $C \cap K$ is normal in C and $3 \notin \pi((C \cap K) / P)$. In C / P there exists a Frobenius group R with kernel of order 7 and complement of order 3 . From 9 it follows that $9 \in \omega(C)$ or $21 \in \omega(C)$. Thus $9 \cdot 19 \in \omega$ or $21 \cdot 19 \in \omega$; a contradiction.

Therefore, $S \simeq A l t_{27}$. By Lemma 6 it follows that the subgroup K is trivial. Hence $\omega(S) \neq \omega$ and $\operatorname{Aut}(S)=S y m_{27}$, we see that $G \simeq S y m_{27}$. The proposition is proved.

8. Proof of Main Theorem and Corollaries

The theorem follows from Propositions 1-5. The corollary 1 follows from Proposition 2 and Lemma 8. The corollary 2 follows from Theorem and [1]-[6].

References

[1] R. Brandl, W. Shi, Finite groups whose element orders are consecutive integers, J. Algebra, 143:2 (1991), 388-400. Zbl 0745.20022
[2] C. E. Praeger, W. Shi, A characterization of some alternating and symmetric groups, Comm. Algebra, 22:5 (1994), 1507-1530. Zbl 0802.20016
[3] V. D. Mazurov, Characterizations of finite groups by sets of orders of their elements, Algebra and Logic, 36:1 (1997), 23-32. Zbl 0880.20007
[4] M. R. Darafsheh, A. R. Modhaddamfar, A characterization of some finite groups by their element orders, Algebra Colloq, 7:4 (2000), 467-476. Zbl 0969.20010
[5] A. V. Zavarnitsine, Recognition by the set of element orders of symmetric groups of degree r and $r+1$ for prime r, Siberian Math. J., 43:5 (2002), 808-811. Zbl 1018.20004
[6] I. B. Gorshkov, Recognizability of symmetric groups by spectrum, Algebra and Logic, 53:6 (2015), 450-457. Zbl 1320.20014
[7] A. V. Zavarnitsine, Recognition of alternating groups of degrees $r+1$ and $r+2$ for prime r and the group of degree 16 by their element orders sets, Algebra and Logic, 39:6 (2000), 370-377. Zbl 0979.20020
[8] D. Gorenstein, Finite groups, Harper and Row, New York (1968). Zbl 0185.05701
[9] A. V. Vasil'ev, On connection between the structure of a finite group and the properties of its prime graph, Siberian Math. J., 46:3 (2005), 396-404. Zbl 1096.20019
[10] A. V. Vasil'ev, On finite groups isospectral to simple classical groups, J. Algebra, 423 (2015), 318-374. Zbl 1318.20017
[11] I. A. Vacula, On the structure of finite groups isospectral to an alternating group, Proceedings of the Steklov Institute of Mathematics, 272:1 (supplement) (2011), 271-286.
[12] V. D. Mazurov, The set of orders of elements in a finite group, Algebra and Logic, 33:1 (1994), 49-55. Zbl 0823.20024
[13] A. V. Zavarnitsine, Finite simple groups with narrow prime spectrum, Siberian electronic mathematical reports, 6 (2009), 1-12. Zbl 1289.20021
[14] The GAP Group, GAP - Groups, algorithms, and programming. Version 4.4. 2004 (http://www.gap-system.org).
[15] A. S. Kleshchev, A. A. Premet, On second degree cohomology of symmetric and alternating groups, Comm. Algebra, 21:2 (1993), 583-600. Zbl 0798.20046
[16] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups, Oxford: Clarendon Press, 1985. Zbl 0568.20001

Ilya Borisovich Gorshkov
N. N. Krasovskil Institute of Mathematics and Mechanics,

16, S. Kovalevskaja St, 620990, Ekaterinburg, Russia,
E-mail address: ilygor8@gmail.com
Alexandr Nikolaevich Grishkov
Instituto de Matematica e Statistica, Universidade de Sao Paulo, R. do Matao, 1010 - Vila Universitaria,

05508-090, Sao Paulo, Brasil,
E-mail address: ilygor8@gmail.com

[^0]: Gorshkov, I.B., Grishkov, A.N. On recognition by spectrum of symmetric groups. © 2016 Gorshkov I.B., Grishkov A.N.
 The work is supported by the FAPESP (grant no. 2014/08964-1), by the grant of the President of Russian Federation for young scientists (grants no. MK-6118.2016.1), by the RFFI (grant no. 13-01-00239a).

 Received March, 13, 2015, published February, 26, 2016.

