Plant Soil Environ., 2019, 65(8):377-386 | DOI: 10.17221/594/2018-PSE

Biomass yield and energy efficiency of willow depending on cultivar, harvesting frequency and planting densityOriginal Paper

Bogdan Kulig*,1, Edward Gacek2, Roman Wojciechowski2, Andrzej Oleksy1, Marek Ko³odziejczyk1, Wojciech Szewczyk1, Agnieszka Klimek-Kopyra1
1 Department of Crop Production, University of Agriculture in Krakow, Krakow, Poland
2 Research Center for Cultivar Testing, Slupia Wielka, Poland

The study aimed at comparing the yield of dry biomass and energy efficiency of 22 willow cultivars depending on the harvesting frequency and variable plant density. The field experiment was established in 2010. The willow cultivars were planted in two densities; 13 300 and 32 500 plants per ha. Among the compared cultivars in the second year (2013) of full production, high yield of dry matter was obtained from cvs. Tordis (33.1 t/ha/year), Inger (30.4 t/ha/year) and Klara (29.0 t/ha/year). After six years of cultivation, the highest aboveground dry matter was given by cvs. Tora (27.4 t/ha/year) and Tordis (27.0 t/ha/year). The gross calorific value of willow biomass ranged from 15.2-20.1 GJ/t dry weight. Greater energy efficiency (329.3 GJ/ha/year) occurred in willow cultivars collected in a two-year cycle than in the one-year cycle (286.4 GJ/ha/year). In the two-year cycle collected in the third year after planting, energy efficiency was greater (379.5 GJ/ha/year) than in the two-year cycle harvested in the sixth year after planting (279.15 GJ/ha/year). The initial slower growth of biomass does not determine plant yielding.

Keywords: willow biomass production; Salix spp.; energy crop; harvest rotation; renewable energy source

Published: August 31, 2019  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Kulig B, Gacek E, Wojciechowski R, Oleksy A, Ko³odziejczyk M, Szewczyk W, Klimek-Kopyra A. Biomass yield and energy efficiency of willow depending on cultivar, harvesting frequency and planting density. Plant Soil Environ.. 2019;65(8):377-386. doi: 10.17221/594/2018-PSE.
Download citation

References

  1. Achinelli F.G., Doffo G., Barotto A.J., Luquez V., Monteoliva S. (2018): Effects of irrigation, plantation density and clonal composition on woody biomass quality for bioenergy in a short rotation culture system with willows (Salix spp.) Revista Arvore, 42: e420210. Go to original source...
  2. Adegbidi H.G., Volk T.A., White E.H., Abrahamson L.P., Briggs R.D., Bickelhaupt D.H. (2001): Biomass and nutrient removal by willow clones in experimental bioenergy plantations in New York State. Biomass and Bioenergy, 20: 399-411. Go to original source...
  3. Bergante S., Facciotto G., Minotta G. (2010): Identification of the main site factors and management intensity affecting the establishment of short-rotation-coppices (SRC) in Northern Italy through stepwise regression analysis. Central European Journal of Biology, 5: 522-530. Go to original source...
  4. Bergkvist P., Ledin S. (1998): Stem biomass yields at different planting designs and spacings in willow coppice systems. Biomass and Bioenergy, 14: 149-156. Go to original source...
  5. Börjesson P.I.I. (1996): Energy analysis of biomass production and transportation. Biomass and Bioenergy, 11: 305-318. Go to original source...
  6. Bullard M.J., Mustill S.J., McMillan S.D., Nixon P.M.I., Carver P., Britt C.P. (2002): Yield improvements through modification of planting density and harvest frequency in short rotation coppice Salix spp. - 1. Yield response in two morphologically diverse varieties. Biomass and Bioenergy, 22: 15-25. Go to original source...
  7. Cerrillo T., Álvarez J., Battistella A., Braccini C., Casaubón E., Ceballos D., Cortizo S., Fernandez Tschieder E., Fernández P.C., Faustino L., Fracassi N., García Cortés M., González A., Grieco L., Hemming A., Landi L., Mangieri V., Mema V., Monteverde S., Mujica G., Olemberg D. (2015): Salicáceas afforestation as a contribution to the sustainable development of the Paraná Delta. Disertación. XXIX Jornadas Forestales de Entre Ríos, Concordia, 14. (In Spanish)
  8. Dimitriou I., Aronsson P. (2005): Willows for energy and remediation in Sweden. Unasylva, 56: 47-50.
  9. Grzybek A. (2004): Forecast for the use of renewable energy sources in the agricultural sector against the background of changes. In: Lewandowski P., Nowak W. (eds.): Development of Renewable Energy in Western Pomerania. Stetin, Hogben, 211-218. (In Polish)
  10. Isebrands J.G., Aronsson P., Carlson M., Ceulemans R., Coleman M., Dickinson N., Dimitriou J., Doty S., Gardiner E., Heinsoo K., Johnson J.D., Koo Y.B., Kort J., Kuzovkina J., Licht L., McCracken A.R., McIvor I., Mertens P., Perttu K., Riddell Black D., Robinson B., Scarascia Mugnozza G., Schroeder W.R., Stanturf J., Volk T.A., Weih T.A. (2014): Environmental applications of poplars and willows. In: Isebrands J.G., Richardson J. (eds): Poplars and Willows: Trees for Society and the Environment. Rome, The Food and Agriculture Organization of the United Nations and Centre for Agriculture and Bioscience International, 258-336. Go to original source...
  11. Kopp R.F., Abrahamson L.P., White E.H., Burns K.F., Nowak C.A. (1997): Cutting cycle and spacing effects on biomass production by a willow clone in New York. Biomass Bioenergy, 12: 313-319. Go to original source...
  12. Labrecque M., Teodorescu T.I. (2001): Influence of plantation site and wastewater sludge fertilization on the performance and foliar nutrient status of two willow species grown under SRIC in southern Quebec (Canada). Forest Ecology and Management, 150: 223-239. Go to original source...
  13. Labrecque M., Teodorescu T.I. (2005): Field performance and biomass production of 12 willow and poplar clones in short-rotation coppice in southern Quebec (Canada). Biomass and Bioenergy, 29: 1-9. Go to original source...
  14. Larsen S.U., Jørgensen U., Laerke P.E. (2014): Willow yield is highly dependent on clone and site. Bioenergy Research, 7: 1280-1292. Go to original source...
  15. Lipiñski A.J., ¯ejmo A.A. (2012): Cultivation of Salix viminalis willow and possibilities of improving the energy balance of Eastern Poland voivodships. Technical Sciences, 15: 5-14.
  16. Makkonen H.P., Granzow S.G., Cheshire E.S. (2000): Kraft pulp from plantation grown biomass willow. In: Proceeding of the 3rd Biennial Conference, Short Rotation Woody Crops. New York, Operations Working Group, Syracuse, 11.
  17. Nissim W.G., Lafleur B., Labrecque M. (2018): The performance of five willow cultivars under different pedoclimatic conditions and rotation cycles. Forests, 9: 349. Go to original source...
  18. Djomo S.N., Ac A., Zenone A., De Groote T., Bergante S., Facciotto G., Sixto H., Ciria Ciria P., Weger J., Ceulemans R. (2015): Energy performances of intensive and extensive short rotation cropping systems for woody biomass production in the EU. Renewable and Sustainable Energy Reviews, 41: 845-854. Go to original source...
  19. Owoc D., Walczyk J. (2013): Use of energy willow for the production of energy in the podkarpackie province. Acta Scientiarum Polonorum Silvarum Colendarum Ratio et Industria Lignaria, 12: 37-44.
  20. Smaliukas D., Noreika R., Puida E. (2008): Evaluation of morphobiological, biomass and energetic characteristics of Salix viminalis L. and S. dasyclados Wimm. genotypes in short rotation plantations. Biologija, 54: 97-100. Go to original source...
  21. Stolarski M.J., Szczukowski S., Tworkowski J., Klasa A. (2013): Yield, energy parameters and chemical composition of short-rotation willow biomass. Industrial Crops and Products, 46: 60-65. Go to original source...
  22. Stolarski M.J., Szczukowski S., Tworkowski J., Krzy¿aniak M., Za³uski D. (2017): Willow biomass and cuttings´ production potential over ten successive annual harvests. Biomass and Bioenergy, 105: 230-247. Go to original source...
  23. Stolarski M.J., Szczukowski S., Tworkowski J., Wróblewska H., Krzy¿aniak M. (2011): Short rotation willow coppice biomass as an industrial and energy feedstock. Industrial Crops and Products, 33: 217-223. Go to original source...
  24. Szczukowski S., Stolarski M., Tworkowski J., Przyborowski J., Klasa A. (2005): Productivity of willow coppice plants grown in short rotations. Plant, Soil and Environment, 51: 423-430. Go to original source...
  25. Szczukowski S., Tworkowski J., Klasa A., Stolarski M. (2002): Productivity and chemical composition of wood tissues of short rotation willow coppice cultivated on arable land. Rostlinná výroba, 48: 413-417. Go to original source...
  26. Verwijst T. (1991): Shoot mortality and dynamics of live and dead biomass in a stand of Salix viminalis. Biomass and Bioenergy, 1: 35-39. Go to original source...
  27. Volk T.A., Abrahamson L.P., Cameron K.D., Castellano P., Corbin T., Fabio E., Johnson G., Kuzovkina-Eischen Y., Labrecque M., Miller R., Sidders D., Smart L.B., Staver K., Stanosz G.R., Van Rees K. (2011): Yields of willow biomass crops across a range of sites in North America. Aspects of Applied Biology, 112: 67-74.
  28. Weger J., Hutla P., Bubeník J. (2016): Yield and fuel characteristics of willows tested for biomass production on agricultural soil. Research in Agricultural Engineering, 62: 155-161. Go to original source...
  29. Wilkinson J.M., Evans E.J., Bilsborrow P.E., Wright C., Hewison W.O., Pillbeam D.J. (2007): Yield of willow cultivars at different planting densities in a commercial short rotation coppice in the north of England. Biomass and Bioenergy, 31: 469-474. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.