Plant Soil Environ., 2009, 55(11):461-467 | DOI: 10.17221/42/2009-PSE

Effects of co-cropping on bioaccumulation of trace elements in Thlaspi caerulescens and Salix dasyclados

Z. Fuksová, J. Száková, P. Tlustoą
Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic

Most phytoremediation technologies are based on the use of selected plant species cropped as in monoculture. Separated (monoculture) and combined (simultaneous) cropping of hyperaccumulator Thlaspi caerulescens and accumulator tree Salix dasyclados were tested in our experiment. We used moderately and highly contaminated soil. Extremely contaminated soil caused progressive mortality of willows planted separately. Combined cropping with T. caerulescens enabled willows to survive. Generally, we determined decreased bioaccumulation of As, Cd, and Pb in both tested species and Zn in willow plants. Combined cropping enhanced bioaccumulation of Zn in T. caerulescens shoots. The remediation efficiency of the individual species in the co-cropping system did not differ from those obtained in separate cropping mode. For As and Pb the negligible effectiveness of phytoextraction was confirmed for both separate and combined cropping of the tested plant species.

Keywords: phytoextraction; cadmium; zinc; bioaccumulation; combined cropping

Published: November 30, 2009  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Fuksová Z, Száková J, Tlustoą P. Effects of co-cropping on bioaccumulation of trace elements in Thlaspi caerulescens and Salix dasyclados. Plant Soil Environ.. 2009;55(11):461-467. doi: 10.17221/42/2009-PSE.
Download citation

References

  1. Adriano D.C. (2001): Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability, and Risks of metals. 2 nd Edition, Springer-Verlag, New York.
  2. Alloway B.J. (1990): Heavy Metals in Soils. Blackie and Son Ltd., Glasgow and London.
  3. Baker A.J.M. (1987): Metal tolerance. New Phytologist, 106: 93-111. Go to original source...
  4. Baker A.J.M., Brooks R.R. (1989): Terrestrial higher plants which hyperaccumulate metallic elements - a review of their distribution, ecology and phytochemistry. Biorecovery, 1: 81-126.
  5. Baker A.J.M., McGrath S.P., Reeves R.D., Smith J.A.C. (2000): Metal hyperaccumulator plants: review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In: Terry N., Bańuelos G. (eds.): Phytoremediation of Contaminated Soils and Water. Lewis Publishers CRC, Boca Raton, 85-108. Go to original source...
  6. Brandstetter A., Lombi E., Wenzel W.W., Adriano D.C. (2000): Arsenic-contaminated soils: I. Risk assessment. In: Wise D.L., Trantolo D.J., Cichon E.J., Inyang H.I., Stottmeister U. (eds.): Remediation Engineering of Contaminated Soils. Marcel Dekker Inc., New York, 715-737.
  7. Dos Santos Utmazián M.N., Wieshammer G., Vega R., Wenzel W.W. (2007): Hydroponic screening for metal resistance and accumulation of cadmium and zinc in twenty clones of willows and poplars. Environmental Pollution, 148: 155-165. Go to original source... Go to PubMed...
  8. Echevarria G., Morel J.L., Fardeau J.C., Leclerc-Cessac E. (1998): Assessment of phytoavailability of nickel in soils. Journal of Environmental Quality, 27: 1064-1070. Go to original source...
  9. Fischerová Z., Tlustoą P., Száková J., ©ichorová K. (2006): A comparison of phytoremediation capability of selected plant species for given trace elements. Environmental Pollution, 144: 93-100. Go to original source... Go to PubMed...
  10. Gove B., Hutchinson J.J., Young S.D., Craigon J., McGrath S.P. (2002): Uptake of metals by plants sharing a rhizosphere with the hyperaccumulator Thlaspi caerulescens. International Journal of Phytoremediation, 4: 267-281. Go to original source...
  11. Greger M., Landberg T. (2001): Tolerance to and uptake of metals in different clones of Salix viminalis grown in wastewater. In: Greger M., Landberg T., Berg B. (eds.): Salix Clones With Different Properties to Accumulate Heavy Metals for Production of Biomass. Akademitryck AB, Edsbruk, 28-37.
  12. Hernández-Allica J., Becerril J.M., Zárate O., Garbisu C. (2006): Assessment of the efficiency of a metal phytoextraction process with biological indicators of soil health. Plant and Soil, 281: 147-158. Go to original source...
  13. Jungk A.O. (1996): Dynamics of nutrient movement at the soil-root interface. In: Waisel Y., Eshel A., Kafkafi U. (eds.): Plant Roots - The Hidden Half. 2 nd Edition, Marcel Dekker Inc., New York, 529-556.
  14. Keller C., Hammer D., Kayser A., Richner W., Brodbeck M., Sennhauser M. (2003): Root development and heavy metal phytoextraction efficiency: comparison of different plant species in the field. Plant and Soil, 249: 67-81. Go to original source...
  15. Marschner H., Römheld V. (1996): Root-induced changes in the availability of micronutrients in the rhizosphere. In: Waisel Y., Eshel A., Kafkafi U. (eds.): Plant Roots - The Hidden Half. 2 nd Edition. Marcel Dekker Inc., New York, 557-579.
  16. McGrath S.P., Zhao F.J. (2003): Phytoextraction of metals and metalloids from contaminated soils. Current Opinion in Biotechnology, 14: 277-282. Go to original source... Go to PubMed...
  17. McGrath S.P., Lombi E., Gray C.W., Caille N., Dunham S.J., Zhao F.J. (2006): Field evaluation of Cd and Zn phytoextraction potential by the hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri. Environmental Pollution, 141: 115-125. Go to original source... Go to PubMed...
  18. Meers E., Lamsal S., Vervaeke P., Hopgood M., Lust N., Tack F.M.G. (2005): Availability of heavy metals for uptake by Salix viminalis on a moderately contaminated dredged sediment disposal site. Environmental Pollution, 137: 354-364. Go to original source... Go to PubMed...
  19. Miholová D., Mader P., Száková J., Slámová A., Svatoą Z. (1993): Czechoslovakian biological certified reference materials and their use in the analytical quality assurance system in a trace element laboratory. Fresenius' Journal of Analytical Chemistry, 345: 256-260. Go to original source...
  20. Pulford I.D., Watson C. (2002): Phytoremediation of heavy metal-contaminated land by trees - a review. Environment International, 1032: 1-12.
  21. Robinson B.H., Mills T.M., Petit D., Fung L.E., Green S.R., Clothier B.E. (2000): Natural and induced cadmium-accumulation in poplar and willow: implications for phytoremediation. Plant an Soil, 227: 301-306. Go to original source...
  22. Rosselli W., Keller C., Boschi K. (2003): Phytoextraction capacity of trees growing on a metal contaminated soil. Plant and Soil, 256: 265-272. Go to original source...
  23. Sauerbeck D. (1985): Funktionen, Güte und Belastbarkeit des Bodens aus agrikulturchemischer Sicht. Materialien zur Umweltforschung, Kohlhammer Verlag, Stuttgart.
  24. Saxena P.K., KrishnaRaj S., Dan T., Perras M.R., Vettakkorumakankav N.N. (1999): Phytoremediation of heavy metal contaminated and polluted soils. In: Prasad M.N.V., Hagemeyer J. (eds.): Heavy Metal Stress in Plants - From Molecules to Ecosystems. Springer-Verlag, Berlin, 305-329. Go to original source...
  25. Schmidt U. (2003): Enhancing phytoextraction: the effect of chemical soil manipulation on mobility, plant accumulation, and leaching of heavy metals. Journal of Environmental Quality, 32: 1939-1954. Go to original source... Go to PubMed...
  26. Smilde K.W., Van Luit B., Van Driel W. (1992): The extraction by soil and absorption by plants of applied zinc and cadmium. Plant and Soil, 143: 233-238. Go to original source...
  27. Vyslouľilová M., Tlustoą P., Száková J. (2003a): Cadmium and zinc phytoextraction potential of seven clones of Salix spp. planted on heavy metal contaminated soils. Plant, Soil and Environment, 49: 542-547. Go to original source...
  28. Vyslouľilová M., Tlustoą P., Száková J., Pavlíková D. (2003b): As, Cd, Pb and Zn uptake by Salix spp. clones grown in soils enriched by high loads of these elements. Plant, Soil and Environment, 49: 191-196. Go to original source...
  29. Tlustoą P., Száková J., Vyslouľilová M., Pavlíková D., Weger J., Javorská H. (2007): Variation in the uptake of arsenic, cadmium, lead, and zinc by different species of willows Salix spp. grown in contaminated soils. Central European Journal of Biology, 2: 254-275. Go to original source...
  30. Weger J., Havlíčková K. (2002): The first results of the selection of woody species for short rotation coppices in the transitional oceanic-continental climate of the Czech Republic. In: 12th European Conference Biomass for Energy, Industry and Climate Protection, Amsterdam, ETA Florence, 107-110.
  31. Whiting S.N., Leake J.R., McGrath S.P., Baker A.J.M. (2001a): Zinc accumulation by Thlaspi caerulescens from soils with different Zn availability: a pot study. Plant and Soil, 236: 11-18. Go to original source...
  32. Whiting S.N., Leake J.R., McGrath S.P., Baker A.J.M. (2001b): Assessment of Zn mobilization in the rhizosphere of Thlaspi caerulescens by bioassay with nonaccumulator plants and soil extraction. Plant and Soil, 237: 147-156. Go to original source...
  33. Wieshammer G., Unterbrunner R., Garcia T.B., Zivkovic M.F., Puschenreiter M., Wenzel W.W. (2007): Phytoextraction of Cd and Zn from agricultural soils by Salix ssp. and intercropping of Salix caprea and Arabidopsis halleri. Plant and Soil, 298: 255-264. Go to original source...
  34. Zhao F.J., Lombi E., McGrath S.P. (2003): Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens. Plant and Soil, 249: 37-43. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.