Vet Med - Czech, 2008, 53(9):501-509 | DOI: 10.17221/1981-VETMED

Osteogenic actions of the osteogenic growth peptide on bovine marrow mesenchymal stromal cells in culture

H.B. Zhu, D.Z. Guo, S.J. Yang, Y.H. Zhang, H. Wang, H.T. Guo, Y. Zhang, D.C. Cheng
Huazhong Agricultural University, College of Veterinary Medicine, Wuhan, China

The osteogenic growth peptide (OGP) regulates the differentiation of marrow mesenchymal stem cells derived from human and rodent cell lines into osteoblasts. Whether OGP directly regulates the bovine marrow mesenchymal stem cells differentiating into osteoblasts remains unknown. In this study, we evaluated the effects of OGP on the growth and differentiation of bovine marrow mesenchymal stem cells in culture. Our results showed that OGP promoted osteogenic differentiation of the bovine stem cells. OGP increased alkaline phosphatase (ALP) activity and mineralized nodule formation, and stimulated osteoblast-specific mRNA expression of Osteocalcin (BGP). On the other hand, OGP dose-dependently stimulated the expression of endothelial nitric oxide synthases. These results show for the first time a direct osteogenic effect of OGP on bovine marrow stromal cells in culture, which could be mediated by induction of endothelial nitric oxide synthases.

Keywords: osteogenic growth peptide; bovine; marrow stromal cells; eNOS

Published: September 30, 2008  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Zhu HB, Guo DZ, Yang SJ, Zhang YH, Wang H, Guo HT, et al.. Osteogenic actions of the osteogenic growth peptide on bovine marrow mesenchymal stromal cells in culture. Vet Med-Czech. 2008;53(9):501-509. doi: 10.17221/1981-VETMED.
Download citation

References

  1. Afzal F., Polak J., Buttery L. (2004): Endothelial nitric oxide synthase in the control of osteoblastic mineralizing activity and bone integrity. T h e J o u r n a l o f P a th o l ogy, 202, 503-510. Go to original source... Go to PubMed...
  2. Aguirre J., Buttery L., O'Shaughnessy M., Afzal F., Fernandez de Marticorena I., Hukkanen M., Huang P., MacIntyre I., Polak J. (2001): Endothelial nitric oxide synthase gene-deficient mice demonstrate marked retardation in postnatal bone formation, reduced bone volume, defects in osteoblast maturation and activity. The American Journal of Pathology, 158, 247-250. Go to original source... Go to PubMed...
  3. Armour K.E., Armour K.J., Gallagher M.E., Godecke A., Helfrich M.H., Reid D.M., Ralston S. H. (2001): Defective bone formation and anabolic response to exogenous estrogen in mice with targeted disruption of endothelial nitric oxide synthase. Endocrinology, 142, 760-766. Go to original source... Go to PubMed...
  4. Bab I., Chorev M. (2002): Osteogenic growth peptide: from concept to drug design. Biopolymers, 66, 33-48. Go to original source... Go to PubMed...
  5. Bab I., Gazit D., Chorev M., Muhlrad A., Shteyer A., Greenberg Z., Namdar M., Kahn A. (1992): Histone H4-related osteogenic growth peptide (OGP): a novel circulating stimulator of osteoblastic activity. EMBO Journal, 11, 1867-1873. Go to original source... Go to PubMed...
  6. Bocci G., Danesi R., Fioravanti A., Del Tacca M. (2002): The effect of osteogenic growth peptide on proliferation and adhesion of hemc-1 human endothelial cells. Pharmacological Research, 45, 21-25. Go to original source... Go to PubMed...
  7. Bosnakovski D., Mizuno M., Kim G., Ishiguro T., Okumura M., Iwanaga T., Kadosawa T., Fujinaga T. (2004): Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells in pellet cultural system. Experimental Hematology, 32, 502-509. Go to original source... Go to PubMed...
  8. Bradford M.M. (1976): A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. A n a lytical Biochemistry, 72, 248-254. Go to original source...
  9. Chen Z.X., Chang M., Peng Y.L., Zhao L., Zhan Y.R., Wang L.J., Wang R. (2007): Osteogenic growth peptide C-terminal pentapeptide [OGP(10-14)] acts on rat bone marrow mesenchymal stem cells to promote differentiation to osteoblasts and to inhibit differentiation to adipocytes. Regulatory Peptides, 142, 16-23. Go to original source... Go to PubMed...
  10. Dai Y., Xu M.F., Wang Y.G., Pasha Z.S., Li T.Y., Ashraf M.H. (2007): HIF-1α induced-VEGF over-expression in bone marrow stem cells protects cardiomyocytes against ischemia. Journal of Molecular and Cellular Cardiology, 42, 1036-1044. Go to original source... Go to PubMed...
  11. Damoulis P.D., Drakos D.E., Gagarib E., Kaplan D.L. (2007): Osteogenic differentiation of human mesenchymal bone marrow cells in silk scaffolds is regulated by nitric oxide. Skeletal Biology and Medicine, Part B, 1117, 367-376. Go to original source... Go to PubMed...
  12. Dennis J.E., Caplan A.I. (1993): Porous ceramic vehicles for rat-marrow-derived (Rattus norvegicus) osteogenic cell delivery: effects of pre-treatment with fibronectin or laminin. The Journal of Oral Implantology, 19, 106-115. Go to PubMed...
  13. Greenberg Z., Gavish H., Muhlrad A., Chorev M., Shteyer A., Namdar-Attar M., Tartakovsky A., Bab I. (1997): Isolation of osteogenic growth peptide from osteoblastic MC3T3 E1 cell cultures and demonstration of osteogenic growth peptide binding proteins. Journal of cellular biochemistry, 65, 359-367. Go to original source... Go to PubMed...
  14. Gurevitch O., Slavin S., Muhlrad A., Shteyer A., Gazit D., Chorev M., Vidson M., Namdar-Attar M., Berger E., Bleiberg I., Bab I. (1996): Osteogenic growth peptide increases blood and bone marrow cellularity and enhances engrafment of bone marrow transplants in mice. Blood, 88, 4719-4724. Go to original source... Go to PubMed...
  15. Gyurkoa R., Shojia H., Battaglinob R.A., Boustanya G., Gibson III F.C., Gencoacd C.A., Stashenkob P., Van Dyke T.E. (2005): Inducible nitric oxide synthase mediates bone development and P. gingivalis-induced alveolar bone loss. Bone, 36, 472-479. Go to original source... Go to PubMed...
  16. Haynesworth S.E., Baber M.A., Caplan A.I. (1992): Cell surface antigens on human marrow-derived mesenchymal cells are detected by monoclonal antibodies. Bone, 13, 69-80. Go to original source... Go to PubMed...
  17. Holzer G, Einhorn T.A., Majeska R.J. (2002): Estrogen regulation of growth and alkaline phosphatase expression by cultured human bone marrow stromal cells. Journal of Orthopaedic Research, 20, 281-288. Go to original source... Go to PubMed...
  18. Jaiswal N., Haynesworth S.E., Caplan A.I., Bruder S.P. (1997): Osteogenic differentiation of purified, cultureexpanded human mesenchymal stem cells in vitro. Journal of Cellular Biochemistry, 64, 295-312. Go to original source... Go to PubMed...
  19. Jaquiery C., Schaeren S., Farhadi J., Mainil-Varlet P., Kunz C., Zeilhofer H.F., Heberer M., Martin I. (2005): In vitro osteogenic differentiation and in vivo boneforming capacity of human isogenic jaw periosteal cells and bone marrow stromal cells, Annals of Surgery, 242, 147-153. Go to original source... Go to PubMed...
  20. Kadiyala S., Young R.G., Thiede M.A., Bruder S.P. (1997): Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro. Cell Transplant, 6, 125-134. Go to original source... Go to PubMed...
  21. Martin D.R., Cox N.R., Hathcock T.L., Niemeyer G.P., Baker H.J. (2002): Isolation and characterization of multipotential mesenchymal stem cells from feline bone marrow. Experimental Hematology, 30, 879-886. Go to original source... Go to PubMed...
  22. Mastrogiacomo M., Cancedda R., Quarto R. (2001): Effect of different growth factors on the chondrogenic potential of human bone marrow stromal cells. Osteoarthritis Cartilage, 9, 36-40. Go to original source... Go to PubMed...
  23. Molinuevo M.S., Barrio D.A., Cortizo A.M., Etcheverry S.B. (2004): Antitumoral properties of two new vanadyl (IV) complexes on osteoblasts in culture. Role of apoptosis and oxidative stress. Cancer Chemotherapy and Pharmacology, 53, 163-172. Go to original source... Go to PubMed...
  24. Omae H., Mochizuki Y., Yokoya S., Adachi N., Och M. (2007): Augmentation of tendon attachment to porous ceramics by bone marrow stromal cells in a rabbit model. International Orthopaedics (SICOT), 31, 353-358. Go to original source... Go to PubMed...
  25. Rahnert J., Fan X., Case N., Murphy T.C., Grassi F., Sen B., Rubin J. (2008): The role of nitric oxide in the mechanical repression of RANKL in bone stromal cells, Bone, 10, 3-6. Go to original source... Go to PubMed...
  26. Ringe J., Kaps C., Schmitt B., Buscher K., Bartel J., Smolian H., Schultz O., Burmester G.R., Haupl T., Sittinger M. (2002): Porcine mesenchymal stem cells. Induction of distinct mesenchymal cell lineages. Cell and Tissue Research, 307, 321-327. Go to original source... Go to PubMed...
  27. Robinson D., Bab I., Nevo Z. (1995): Osteogenic growth peptide (OGP) regulates proliferation and osteogenic maturation of human and rabbit bone marrow stromal cells. Journal of Bone and Mineral Research, 10, 690-696. Go to original source... Go to PubMed...
  28. Rob J., Hof V., Ralston S.H. (2001): Nitric oxide and bone. Immunology, 103, 255-261. Go to original source... Go to PubMed...
  29. Spreafico A., Frediani B., Capperucci C., Leonini A., Gambera D., Ferrata P., Rosini S., Di Stefano A., Galeazzi M., Marcolongo R. (2006): Osteogenic growth peptide effects on primary human osteoblast cultures: potential relevance for the treatment of glucocorticoid-induced osteoporosis. Journal of Cellular Biochemistry, 98, 1007-1020. Go to original source... Go to PubMed...
  30. Sun Y.Q., Ashhurst D.E. (1998): Osteogenic growth peptide enhances the rate of fracture healing in rabbits. Cell Biology International, 22, 313-319. Go to original source... Go to PubMed...
  31. Taylor B.C., Schreiner P.J., Zmuda J.M., Li J., Moffett S.P., Beck T.J., Cummings S.R, Lee J.M., Walker K., Kristine E. (2006): Association of endothelial nitric oxide synthase genotypes with bone mineral density, bone loss, hip structure, and risk of fracture in older women: The SOF study. Bone, 39, 174-180. Go to original source... Go to PubMed...
  32. Ueno A., Kitase Y., Moriyama K., Inoue H. (2001): MC3T3E1-conditioned medium-induced mineralization by clonal rat dental pulp cells. Matrix Biology, 20, 347-355. Go to original source... Go to PubMed...
  33. Worster A.A., Nixon A.J., Brower-Toland B.D., Williams J. (2000): Effect of transforming growth factor β1 on chondrogenic differentiation of cultured equine mesenchymal stem cells. American Journal of Veterinary Research, 61, 1003-1010. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.