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ABSTRACT

The purpose of this study is to establish a theoretical epidemiologic threshold for the rate of 
reported malaria cases in order to detect epidemics and evaluate the impact of control measures. 
To create this epidemiologic threshold it has been used an multiple cross-over time series 
autoregressive integrated moving average forecasting model that reflects the dependence of the 
magnitude of the rate of malaria reports on the past levels of rain, temperature and vegetation 
density according to factors related with malaria transmission described by the MacDonald’s 
theory. Information available for the model derivation and accuracy testing was obtained 
from Médecins Sans Frontières in Karuzi, a Burundi’s province, with a health network of a 
100-bed hospital and 11 health centers, that consists in the monthly malaria incidence rate 
estimated from clinical diagnostics in medical consultations with a 5-20% of clinical cases 
with microbiological confirmation in non-epidemic periods and less than 2% during outbreaks, 
the cumulative monthly level of precipitation and the minimum and maximum mean monthly 
temperature recorded by the local meteorological stations, as well as the NDVI provided by the 
National Oceanographic and Atmospheric Administration satellites. This available information 
covers the 1997-2003 period. The obtained model makes it possible to create a curve of expected 
non-epidemic case reports with a reliability of 95%. This model identified four epidemics in the 
7-year study period and detected the impact of a malaria control campaign in the last year. The 
application of this methodological tool permits the timely detection of malaria epidemics and 
the evaluation of the impact of measures for its control.

KEYWORDS: Autoregressive integrated moving average modeling (ARIMA); Malaria; Malaria 
epidemiologic surveillance system.

ABBRIVATIONS: ARIMA: Autoregressive integrated moving average modeling; ACF: Sample 
autocorrelation function; PACF: Partial autocorrelation function; NDVI: Normalized Differ-
ence Vegetation Index.

HIGHLIGHTS

•	Malaria is rampant in Africa and causes significant mortality and morbidity
•	Malaria transmission is complex and is believed to be associated with local climate changes
•	We propose a tool of malaria incidence forecasting for their epidemiological surveillance 
•	 The proposed model could be useful for detecting and preventing malaria epidemics

INTRODUCTION

Malaria epidemics are an important public health problem for the populations of Sub-
Saharan Africa.1-5 The influence of climatic factors on the genesis of malaria epidemics has 



EPIDEMIOLOGY

Open Journal
http://dx.doi.org/10.17140/EPOJ-2-108

Epidemiol Open J

ISSN 2473-4780

Page 8

been described in numerous studies.6-9 Early detection of these 
epidemics has been difficult; however, giving rise to high rates 
of morbidity and mortality that could be avoided with timely 
and effective detection and intervention measures.10-11 Initiatives 
such as the Malaria Early Warning Systems12 have been 
undertaken to develop and evaluate more precise methods for the 
definition, detection, early warning and forecasting of malaria 
epidemics.13-15 Both the definition and methods of detection 
of malaria epidemics are generally based on the estimation 
of measures of central tendency and dispersion of historic 
malaria morbidity to establish epidemic thresholds in order to 
make decisions about the application of contingency measures 
to control its spread.16,17 This approach suffers from serious 
methodological weaknesses, however, such as the arbitrary 
manner of deciding what morbidity rates to exclude from the 
calculation of the threshold because they are considered epidemic 
values, thus defining “epidemic” before hand in order to make 
a supposedly objective determination of what constitutes an 
epidemic. Another limitation is the use of statistical procedures 
for the treatment of random variables for measurements of 
incidence, when the variables are auto-correlated, because of 
these kinds of weaknesses; the epidemiologic thresholds for 
epidemic detection obtained by such methods are not reliable.

	 Our starting hypothesis is that environmental factors 
such as temperature, precipitation and vegetation levels, as 
estimators of the population density and infectivity of the 
vector and the development of the parasite, on the one hand, 
combined with the level of malaria incidence in a recent period, 
as an estimator of the magnitude of the parasite reservoir and 
population susceptibility, on the other, could explain variations 
in malaria incidence. This study aims to create a theoretical 
epidemiologic threshold i.e, endemic, non-epidemic, usually 
expected, normally, incidence, based on the behavior of the 
incidence rate predicted by a model that establishes the relations 
among the variables. The purpose is to obtain a simple and easily 
applied tool that provides a practical and reliable way to identify 
epidemics, so that health services can implement timely control 
measures to interrupt the spread of the disease or mitigate its 
effects, and to assess the effectiveness of health interventions to 
these ends. Considering the methodological purpose of this study 
we use only real data in order to verify the validity and accuracy 
of our theoretical elaboration. This verification uses as empirical 
material the available reports of monthly malaria cases treated 
by the medical services routinely collected by the surveillance 
system, together with monthly levels of rain, temperature and 
vegetation density in the province of Karuzi, Burundi, during a 
seven years period.

MATERIAL AND METHODS 

Our model is based on factors related with malaria transmission 
described by MacDonald.18 According to this relation; the 
determining factors are vector population density, transmission 
capacity based on vector survival and duration of the extrinsic 
incubation period, and immunity in the susceptible human 
host. Rainfall influences the vector population by affecting 

larvae production and maturation capacity, and is reflected in 
the vegetation index; and temperature influences transmission 
capacity by affecting the extrinsic incubation period. Our 
hypothesis is based on the fact that in tropical areas at 
altitudes over 1,200 m, the most important factor limiting 
malaria transmission is minimum temperature, since under 
16 ºC inhibit parasite maturation, sexual reproduction and 
sporozoite development. Tropical areas between latitudes 25 
ºN and 25 ºS and at altitudes of 1,000-2,000 m have enough 
monthly precipitation to maintain abundant marshy areas where 
vector larvae can develop. In an epidemic situation, factors 
that can most plausibly explain fluctuations in transmission 
are: i) increased minimum temperature, which would permit a 
prolongation of seasonal transmission and a “staircase” effect of 
repeated superinfections with increasing parasitemia and anemia 
up to clinical thresholds; ii) increased maximum temperature, 
shortening the extrinsic incubation period with an exponential 
effect on vector transmission capacity; iii) increased rainfall, 
with consequent increase in vegetation density, resulting in a 
larger vector population and a transmission increase; and iv) 
increased population reservoir of the parasite, which induces 
faster transmission.

	 One way of symbolically representing these assumptions 
can be obtained by taking It to mean the malaria incidence rate 
in month t; Rt as the cumulative level of precipitation in that 
month; Tt as the mean temperature in that month; Vt as the mean 
vegetation density in that month; p as the seasonal oscillation 
period for the previous three variables; and It+k as the malaria 
incidence rate for a future month that is k months from month t. 
These variables would then be interrelated as follows:

( )* *sin(2 /      )t t t t t kI p R T V Iβα π∗
+→∑ ∑ 		  (a)

	 This relation represents a cumulative linear combination 
of previous values of the incidence rate, as an estimator of 
immunity or population reservoir, and the combination of 
past levels of rainfall, temperature and vegetation density, as 
estimators of vector capacity, combined to influence future 
values of the incidence rate. The term that includes rainfall, 
temperature and vegetation confers an oscillation in the malaria 
incidence with a period according to their common seasonality. 
In expression (a) α is the coefficient for the incidence rate, and β 
for the amplitude of seasonal oscillation estimated by regression. 
The use of * as an operator to link the components expresses 
the lack of a priori knowledge of how they are interrelated. The 
model combines all those terms having significant autocorrelation 
and cross-correlation coefficients with the incidence rate in their 
corresponding lags. 

Data Processing

First we explored malaria rate series, together with temperature, 
precipitation and vegetation levels series, to identify regularities. 
Incidence rate trend analysis and periodogram obtained with 
Fast Fourier and Tukey Transforms help to identify the periodic 
oscillations to be modeled. The sub-series of the last seasonal 
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period are separated. The shortened series is called “base” and 
the separate sub-series “complement”. Rainfall, temperature 
and vegetation series are shortened to the base period. Simple 
autocorrelation function (ACF) and partial autocorrelation 
function (PACF) graphics are obtained for these bases, with lags 
equal to their oscillation period. Then, we identified, adjusted and 
evaluated autoregressive integrated moving average (ARIMA) 
models, which explains the malaria rate by its past values, to 
introduce as a term in model (a). Periodograms are obtained for 
the bases of precipitation, temperature and vegetation series to 
identify seasonal oscillations and their period p in (a). Cross-
correlations are obtained of these three series with the ARIMA 
model residual in the malaria rate base series, to identify lags in 
the relationship. The ARIMA and oscillatory component terms 
are combined to form model (a). The coefficients of the terms and 
goodness-of-fit of the model are estimated. The model works by 
successively entering the previous rates predicted by the model 
itself, and the observed values for precipitation, temperature and 
vegetation in their corresponding lags, thereby obtaining each 
expected non-epidemic rate in the time series window. The 95% 
confidence thresholds are estimated with the base rate series 
white-noise residuals. Data processing was performed using the 

SPSSTM 21.0 and Statgraphics PlusTM 5.1. The usual two-tailed 
statistical significance level of p≤0.05 was established for all 
these tests.

	 Information available for the model derivation and 
accuracy testing was obtained from Médecins Sans Frontières 
in Karuzi. Karuzi is a Burundi’s province located in the central-
eastern area of the country, with a population around 300,000 
inhabitants, at an altitude of 1,500-1,900 m, with mean annual 
temperatures ranging from 10.5-13 ºC to 25.5-28.5 ºC. The area 
is characterized by a October-May wet season, with 141 mm 
mean monthly precipitation, and a June-September dry season, 
with 30 mm mean precipitation. The vegetation mass varies 
with a mean monthly Normalized Difference Vegetation Index 
(NDVI) of 0.36 in July-October, and 0.53 in November-June. 
In Figure 1 shows a typical Burundi vegetation map. Karuzi has 
a health network consisting of a 100-bed hospital and 11 health 
centers with a total of 311 beds.19 The monthly malaria incidence 
rate is estimated from medical consultations considering as a 
case the patient seeking medical care with a fever over 38 ºC, 
after excluding other causes. five hundred twenty percent of 
clinical cases had microbiological confirmation in non-epidemic 

Figure 1: Burundi map of vegetation.
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periods, and <2% during outbreaks, depending on the health 
facility. For the incidence rate the monthly cumulative reports is 
the numerator and the denominator is the total population of the 
province according to the census adjusted for the growth factor. 
We use the cumulative monthly level of precipitation and the 
minimum and maximum mean monthly temperature recorded by 
the local meteorological stations, as well as the NDVI provided 
by the National Oceanographic and Atmospheric Administration 
satellites.20 The images of the vegetation index were processed 
using WinDisp 4. This available information covers the January 
1997 through December 2003 period. During this period 
various epidemic events occurred in Karuzi.17,21 Moreover, at 
the end of 2003, Médecins Sans Frontières together with the 
Burundi Ministry of Health, launched an intervention to reduce 
transmission consisted of implementing a new protocol to 
diagnose and treat malaria, including rapid serologic diagnosis 
of suspected cases and first-line treatment with artemisinin 
compounds drugs22 that produced an important reduction in 
disease transmission, which is still under evaluation.23 To test the 

accuracy of the forecast obtained with the model, the expected 
and observed endemic rates are compared for the periods in 
which the epidemic events and reduced incidence occurred.

RESULTS

Figure 2 shows the 1997-2003 series used to construct the 
model. Its visual exploration does not seem to indicate any 
trend; for rain, temperature and vegetation, there is a certain 
seasonal-type oscillation with a 0, 5-1 year period. The results 
of the trend analysis and periodograms show neither trend nor 
periodic oscillation in the cumulative monthly rate of malaria 
reports, while for the rest of the series they confirm the trend 
absence, and yearly period seasonality. Consequently, for 
rainfall, temperature and vegetation series the 1997-2002 period 
is taken as the base, reserving their values during 2003 as the 
complement, and the malaria rate series is forced to the same 
cut-offs to form its base and complement.

Figure 2: Monthly Malaria Notification Rate per 100 inhabitants in Karuzi province, Burundi, from 
January 1997 to December 2003 (MMNR, first picture in heavy bold solid line); Monthly cumula-
tive rainfall in mm (Rainfall, second pictures in light bold solid line); Maximum and Maximum 
monthly temperature in ºC (Maximum Temperature, third picture in bold dashed line; Minimum 
monthly, fourth picture in light dashed line); and Normalized Difference Vegetation Index (Vegeta-
tion Index, fifth picture in light solid line).
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	 Correlograms of the base malaria rates show a non-
seasonal configuration with significant coefficients only in 
lag 1 (ACF=0.82, PACF=0.82, both p<0.05) which indicates 
that ARIMA model (1, 0, 0) represents the influence of each 
preceding value on the following one. This model fits with a 
coefficient of 0.80 (p<0.0001) and explains 80% of the observed 
variability in the rate, leaving a residual that is nearly white 
noise, but with hints of regular patterns.

	 The base periodograms of precipitation, temperature 
and vegetation show, similar to complete series, a seasonal 
oscillation with a period of 12 months, therefore term1  of the 
model takes the form sinβ(0.52 Rt Tt Vt). Cross-correlation of 
this term with the residuals of ARIMA (1,0,0) shows that only 
the lag 1 coefficient is significant, therefore the environmental 
influence on the malaria rate becomes sinβ(0.52Rt-1 Tt-1 Vt-1). With 
the addition of the term for the influence of the environmental 
variables to the autoregressive term, and after fitting the model, 
it takes the form:

It = 0.80It-1 + 0.99sin(0.52Rt-1 Tt-1 Vt-1) 	 (b)

	 This model explains a 82% of the observed variability 
in the malaria rate (R2

adj, p<0.0001) with a 95% CI of 0.68-0.95 
(p<0.0001) for the coefficient of the autoregressive term and 
of 0.97-1.00 (p<0.0001) for the environmental term. Model (b) 
leaves a white noise residual on the base malaria rates, normally 
distributed with a mean of 0 and 0.98 SD.
	
	 Figure 3 depicts the expected epidemiologic threshold 
for the malaria rate, with its 95% confidence interval, that is 
obtained with this model for the period February 1997-December 
2002, using the rate for January 1997 as the initial value, and 
the precipitation, maximum temperature and vegetation density 
for each preceding month. Table 1 shows the expected non-

epidemic monthly cumulative malaria case-reported rate for 
the base malaria series, the epidemiologic threshold, and the 
observed value for each month in the period 1997-2002. This 
epidemiologic threshold identifies four periods of an excess in 
malaria incidence rates: June-July 1999, October 1999-January 
2000, June-July 2000, and October 2000-June 2001, 
corresponding to the four epidemics that occurred in the study 
period.13,19 The two values of the rate that exceeds the threshold 
of the epidemiologic threshold during a single month (July 1997 
and January 2002) were not considered epidemic outbreaks, 
following the Serf ling’s criteria.24

	 The epidemiologic threshold predicted for the 
cumulative rate of malaria monthly reports for 2003, with its 
95% threshold, is shown in Figure 4 and in Table 2. A change 
in the trend in the observed rate can be seen beginning in 
November 2003, with a more than 60% reduction with respect 
to the preceding month, which can be attributed to the health 
intervention that began in October of that year.22 This unusual 
decline in the months of November and December 2003 is 
captured by the lower threshold of the epidemiologic threshold 
obtained with the model, which reflects chance fluctuation in the 
rate. 

DISCUSSION

In this work we propose a tool for malaria surveillance that is 
simple in conception and easy to use in defining and detecting 
malaria epidemics, and to evaluate the impact of the measures 
for their control. Direct information about variables related to 
the intensity of malaria transmission, as anopheline density in 
relation to man, about the probability of mosquito survival or 
about the duration of the extrinsic cycle of the parasite in the 
mosquito is not available nor information regarding the state of 
the human population reservoir. This tool makes it possible to 

Figure 3: Expected and observed values for the Monthly Malaria Notification Rate (MMNR) per 100 
inhabitants in Karuzi, Burundi, from January 1997 to December 2002. The upper and lower limits of 
the expected values are estimated for a 95% confidence endemic threshold.
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Month Expected Max Observed Month Expected Max Observed
Jan 1997 --- --- 1.7 Jan 2000 6.6 7.5 7.9

Feb 1.3 2.3 1.6 Feb 6.8 7.8 6.5
Mar 3.0 4.0 1.7 Mar 7.4 8.4 4.2
Apr 2.7 3.7 2.2 Apr 6.5 7.5 3.5
May 2.3 3.3 2.3 May 5.8 6.8 6.5
Jun 3.3 4.3 3.8 Jun 4.7 5.7 10.4
Jul 3.2 4.2 4.9 Jul 4.8 5.8 6.8
Aug 3.6 4.6 2.1 Aug 4.8 5.8 5.6
Sep 2.9 3.9 1.9 Sep 4.8 5.8 5.4
Oct 4.2 5.2 2.3 Oct 3.9 4.8 9.5
Nov 3.4 4.4 2.4 Nov 3.2 4.2 41.6
Dec 4.6 5.6 2.8 Dec 3.8 4.7 42.2

Jan 1998 4.0 5.0 2.7 Jan 2001 3.6 4.6 35.3

Feb 3.2 4.2 4.1 Feb 4.0 5.0 24.4

Mar 4.3 5.3 4.1 Mar 5.1 6.0 25.9

Apr 3.7 4.7 4.0 Apr 5.7 6.6 13.2

May 4.0 5.0 2.3 May 6.1 7.1 11.4
Jun 3.2 4.2 2.7 Jun 5.6 6.6 7.7
Jul 3.7 4.7 2.4 Jul 5.5 6.5 6.2
Aug 4.0 5.0 2.1 Aug 6.1 7.1 6.0
Sep 4.2 5.1 2.8 Sep 5.6 6.6 4.3
Oct 5.0 5.9 3.4 Oct 6.2 7.1 5.0
Nov 4.2 5.2 4.3 Nov 6.8 7.8 5.9
Dec 4.3 5.3 4.2 Dec 5.5 6.5 6.0

Jan 1999 5.4 6.4 4.5 Jan 2002 5.7 6.7 8.4

Feb 4.8 5.8 3.8 Feb 5.1 6.1 5.4
Mar 5.8 6.7 4.1 Mar 5.5 6.5 5.2
Apr 4.9 5.9 2.2 Apr 6.1 7.0 3.8
May 5.1 6.1 5.6 May 5.1 6.0 4.4
Jun 5.1 6.1 9.4 Jun 6.0 7.0 4.3
Jul 5.1 6.1 6.9 Jul 5.8 6.8 4.3
Aug 5.1 6.0 4.4 Aug 5.6 6.6 3.1

Sep 6.0 7.0 5.7 Sep 5.5 6.5 4.1
Oct 5.8 6.8 7.6 Oct 5.3 6.3 4.7
Nov 6.6 7.6 8.9 Nov 5.9 6.9 3.2
Dec 6.1 7.1 8.1 Dec 6.6 7.6 3.2

Table 1: Values predicted for the expected endemic cumulative monthly rate of malaria case reports per 100 inhabitants in Karuzi with the Upper Limit at 95% confidence 
for the epidemic threshold (Max) obtained by the forecasting model and the corresponding rates of monthly malaria cases reported during 1997-2002.

Figure 4: Expected and observed values for the Monthly Malaria Notification Rate per 100 inhab-
itants (MMNR) in Karuzi, Burundi in 2003. The Upper and Lower Limits of the expected values 
are estimated for a 95% confidence epidemiologic threshold.
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forecast an epidemiologic threshold for the cumulative monthly 
consultations rate of malaria for one year period based on the 
values preceding months and on the combination of temperature, 
rainfall and vegetation data observed in the preceding months. 
The estimation of the epidemiologic threshold with our model 
is based on the hypothesis that the malaria incidence rate is an 
estimator of the volume of the parasite reservoir in the human 
population, while rainfall, temperature and vegetation density 
are an estimator of vector transmission capacity.

	 Different methods for the definition and early detection 
of malaria epidemics, such as those proposed by Cullen25, 
Najera26 and CDC,27 use the monthly mean and median with 
their confidence intervals for preceding years, with a minimum 
of 5 years required, to identify an excess of reported cases. 
An evaluation of these methods in Kenya raises considerable 
doubts about their precision: their sensitivity and transparency 
are reduced when rates are transformed into logarithms; alert 
thresholds are established based on small samples (n=5) for 
which standard deviations are calculated; and they arbitrarily 
exclude “epidemic years” in these samples.10-11 From our point of 
view, moreover, these techniques do not consider the influence 
of an environmental component reflecting parasite and vector 
conditions that may result in increased malaria transmission due 
to climatic variations. 

	 Our model for estimating the endemic, non-epidemic, 
threshold offers an explanation for much of the variability 
observed in the malaria rate. Its reliability was shown by the 
ability to identify four empirically-defined epidemics in 1997-
2002 and to detect the impact of a control program in 2003. It 
could generally be said that the expected incidence threshold 
through which the malaria consultations rate in Karuzi should 
pass between 1997 and 2003 is a theoretical representation of 
how this variable would behave, beginning with a particular 
initial number, given the influence of the environmental factors 
observed in that period. This implies that fluctuations in the 
incidence rate “outside” this threshold are not due to important 
variations in these climatic factors, but to factors related with 

other types of events that also determine the triggering and 
magnitude of malaria epidemics. Thus, for the same area and 
time period, Checchi have suggested as triggering factors for 
malaria epidemics: i) armed civil conflict with the consequent 
displacement of the non-immune population, and ii) the 
progressive expansion of rice cultivation in the valleys of central 
Burundi.28 This would explain why the expected rate in our model 
for the months of the large epidemic between October 2000 and 
June 2001 is lower than the expected rate for preceding months, 
so that the model would be able to detect epidemics that are 
produced mainly by increased transmission related with human 
activity rather than climatic variability. The same thing occurs 
with the identification in the model of an important decrease in the 
observed rate in the months of November and December 2003, 
when the previously mentioned health intervention was carried 
out. Again, a reduction in the base rate of reproduction, or mean 
number of secondary infections produced from a single infected 
individual, would lead to an incidence rate much lower than 
expected by the model, by reducing the population reservoir of 
gametocytes as a result of treatment with artemisinin derivatives, 
and not because of the influence of climatic variables.

	 The proposed model for the detection of epidemic 
events in this area can be evaluated using the CDC criteria for 
evaluating surveillance systems.27 That is, a) simplicity: health 
units routinely report malaria cases to the provincial office of the 
Ministry of Health; rigorous and ongoing collection of rainfall 
and temperature data which are relayed to the area epidemiologist; 
collection of vegetation data is not complex for a person with 
minimum training; channels for the flow of information are well 
established and have been improved; and the expected endemic 
threshold obtained for the province can easily be computed by 
putting all the components into the model; b) flexibility: Since 
the system is based on a computer program, it would be flexible 
enough to include changes in data collection that may occur 
among the different actors involved; c) acceptability: the malaria 
epidemic detection system would clearly be accepted since the 
persons involved in the process understand the repercussions of 
these events in their area; d) sensitivity: confirmation of cases 
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Month
(2003)

Threshold Lower  
Limit Expected Threshold Upper Limit Observed

January 1.6 2.6 3.6 4.0

February 1.1 2.1 3.1 3.0
March 2.6 3.5 4.5 3.4

April 2.9 3.9 4.9 3.6

May 3.2 4.2 5.2 4.3

June 3.6 4.6 5.6 3.7
July 3.7 4.7 5.6 4.1

August 2.7 3.7 4.7 2.4

September 3.7 4.7 5.7 2.6

October 3.4 4.4 5.4 3.1

November 4.2 5.2 6.2 1.5

December 3.2 4.2 5.2 1.1
Table 2. Endemic values predicted for the expected cumulative monthly rate of malaria case reports per 100 
population in Karuzi in 2003 according to the forecasting model, with the upper and lower 95% confidence limits of the 
epidemiologic threshold and the observed values for the period.
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by serological testing increases specificity, but not sensitivity; in 
contrast, using reports of suspected malaria cases would detect 
epidemics with higher sensitivity, albeit with a higher number of 
“false positives”; e) Positive Predictive Value (PVP): this system 
may detect epidemics that are not true epidemics, but if we use 
Serfling’s criteria,24 considering at least two consecutive months 
with an incidence above the established threshold, the PVP of the 
system increases considerably since this area is prone to malaria 
epidemics; f) representativeness: this may be limited when 
using reports of consultations for suspected malaria instead of 
microbiological confirmation; what is most important, however, 
is the historic stability of this form of reporting or notification 
that may be affected during period of conflicts or other issues 
outside the scope of the model; and g) timeliness: a limitation 
of the model is the minimum surveillance period it offers for the 
detection of epidemics but, as occurs in most epidemiological 
surveillance systems in rural areas of Africa, it is very difficult 
to obtain weekly reports of malaria cases that would permit 
earlier alerts. With appropriate changes in the forecasting model, 
the same methodology could be used with weekly cumulated 
reporting rates, and this approach would improve the timeliness 
of the epidemic early warning if this data would be obtained by 
the surveillance system of Burundi.

	 The combination of two modeling tools to predict 
malaria endemic-epidemic incidence rates, the described in 
this work for endemic, and another previously published for 
epidemic forecasting29 offers a complete surveillance system for 
detection and development prediction of malaria epidemics and 
the evaluation of control measures. Thus, the model establishing 
endemic thresholds makes it possible to know when an epidemic 
took place, at which time the epidemic forecasting model can be 
applied to estimate its magnitude and plan the type and intensity 
of control measures. Finally, the results of these measures can be 
evaluated using the expected endemic thresholds.

	 The design and development of these types of models 
constitute one more tool—and not the only on—in what should 
be an appropriate and balanced policy for preventive action in 
areas prone to malaria epidemics. Because the multifactorial 
nature of these epidemics makes them difficult to detect, Malaria 
Early Warning Systems are needed that take into account 
variables related with climate, environment and population 
susceptibility.14 With regard to the latter point, these Malaria 
Early Warning Systems should include components that go 
from rigorous and timely epidemiological surveillance and 
improved access to health services with adequate diagnostic and 
therapeutic measures, to monitoring the factors that may affect 
waning individual immunity, i.e. movements of the non-immune 
population or malnutrition.

	 Our model would need to be tested and evaluated before 
being proposed as an operational tool for malaria surveillance. 
Meanwhile, our research continues to focus on these techniques 
and their refinement in order to be able to define precisely when 
an excess of reported cases is a true malaria epidemic. Early 
warning of such epidemics would make allow time on time 

implementation of activities to reduce the suffering caused 
by these events. We can conclude that the application of this 
methodological tool permits the timely detection of malaria 
epidemics and the evaluation of the impact of measures for its 
prevention and control.
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