Role of microRNA in oncogenesis of pituitary tumors and their practical significance

Abstract

Microribonucleic acids (miRNAs) are a class of noncoding RNAs that regulate posttranscriptional gene expression. These molecules are regulators of cell proliferation, metabolism, apoptosis, and differentiation. MiRNAs are not degraded by RNAases and their concentrations can be measured in different body fluids, including serum. The expression of miRNAs varies in intact tissues and tumors, including pituitary adenomas. Pituitary tumors are encountered in 22.5% of the population and, in a number of cases, may be asymptomatic, but in case of invasion or/and hormone overproduction, their clinical presentation is severe with multiple symptoms leading to disability and even death. The mechanisms for the development and progression of pituitary tumors and the markers for remission and recurrence have not been adequately investigated. This literature review discusses the biological significance of miRNAs in pituitary tumors and the potential value of circulating miRNAs as biomarkers.

References

  1. Ezzat S, Asa SL, Coldwell WT, Barr CE, Dodge WE, Vance ML, McCutcheon IE. The prevalence of pituitary adenomas: a systematic review. Cancer. 2004;101(3):613-619. doi: 10.1002/cncr.20412
  2. Daly AF, Rixhon M, Adam C, Dempegioti A, Tichomirowa MA, Beckers A. High prevalence of pituitary adenomas: a cross-sectional study in the province of Liege, Belgium. J Clin Endocrinol Metab. 2006;91(12):4769-4775. doi: 10.1210/jc.2006-1668
  3. Fernandez A, Karavitaki N, Wass JA. Prevalence of pituitary adenomas: a community-based, cross-sectional study in Banbury (Oxfordshire, UK). Clin Endocrinol (Oxf). 2010;72(3):377-382. doi: 10.1016/s0084-3873(10)79801-1
  4. Monson JP. The epidemiology of endocrine tumors. Endocrine-Related Cancer. 2000;7(1):29-36. doi: 10.1677/erc.0.0070029
  5. Roelfsema F, Biermasz NR, Pereira AM. Clinical factors involved in the recurrence of pituitary adenomas after surgical remission: a structured review and meta-analysis. Pituitary. 2012;15(1):71-83. doi: 10.1007/s11102-011-0347-7
  6. Дедов И.И., Белая Ж.Е., Ситкин И.И., Марова Е.И., Пржиялковская Е.Г., Ремизов О.В., Рожинская Л.Я. Значение метода селективного забора крови из нижних каменистых синусов в дифференциальной диагностике АКТГ-зависимого гиперкортицизма. Проблемы эндокринологии. 2009;55:35-40. doi: 10.14341/probl200955635-40
  7. Белая Ж.Е., Рожинская Л.Я., Мельниченко Г.А., Дедов И.И. Современный взгляд на скрининг и диагностику эндогенного гиперкортицизма. Проблемы эндокринологии. 2012;58:35-41. doi: 10.14341/probl201258435-41
  8. Plotz D, Knowlton AL, Ragan C. The natural history of Cushing’s disease. Am J Med. 1952;13:597-614.
  9. Pivonello R, Melnichenko G, Zacharieva S, Gu F, Oscar B, Shah NS, Gaillard R, Colao A. Endocrine abstracts. 2011;26:32-35. Available at: http://www.endocrine-abstracts.org/ea/0026/AbstractBook.aspx
  10. Клиническая нейроэндокринология. Под ред. акад. РАН Дедова И.И. М.: Издательство УП-ПРИНТ; 2011.
  11. Wass JA, Karavitaki N. Nonfunctioning pituitary adenomas: the Oxford experiences. Nature Rev Endocrinol. 2009;5(9):519-522. doi: 10.1038/nrendo.2009.147
  12. Kazunori A. Short and long term effects of trassphenoidal surgery on growth hormone producing pituitary adenomas: based on the experiences with 290 patients. Endocrine Journal. International Congress of Endocrinology. 2010;57(2):280.
  13. Mete O, Asa SL. Clinicopathological correlations in pituitary adenomas. Brain Pathol J. 2012;22(4):443-453. doi: 10.1111/j.1750-3639.2012.00599.x
  14. Filipowicz W, Bhattacharyya SN, Sonenburg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nature Reviews Genetics. 2008;9:102-104. doi: 10.1038/nrg2290
  15. Sivapragasam M, Rotondo F, Ricardo VL, Scheithauer BW, Cusimano M, Syro LV, Kovacs K. MicroRNAs in the Human Pituitary. Endocrine Pathology. 2011;22:134-143. doi: 10.1007/s12022-011-9167-6
  16. Di leva А, Butz Н, Niamah М, Rotondo F, De Rosa, Sav A, Yousef GM, Kovacs K, Cusimano MD. MicroRNAs as Biomarkers in Pituitary Tumors. Neurosurgery. 2014;75:181-189. doi: 10.1227/NEU.0000000000000369
  17. Zampetaki A, Willeit P, Drozdov I, Kiechl S, Mayr M. Profiling of circulating microRNAs: from single biomarkers to re-wired networks. Cardiovascular Research. 2012;93(4):555-562. doi: 10.1093/cvr/cvr266
  18. Turchinovich A, Weiz L, Langheinz A, Burwinkel B. Characterization of extracellular circulating microRNA. Nucleic Acids Research. 2011;39(16):7223-7233. doi:org/10.1093/nar/gkr254
  19. Wagner J, Riwanto M, Besler C et al. Characterization of levels and cellular transfer of circulating lipoprotein-bound microRNAs. Arteriosclerosis Thrombosis, and Vascular Biology. 2013;33(6):1392-1400. doi: 10.1161/atvbaha.112.300741
  20. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology. 2007;9(6):654-659. doi: 10.1038/ncb1596
  21. Théry C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nature Reviews Immunology. 2002;2(8):569-579.
  22. Hergenreider E, Heydt S, Treguer K et al. Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nature Cell Biology. 2012;14(3):249-256. doi: 10.1038/ncb2441
  23. Laffont B, Corduan A, Plé H et al. Activated platelets can deliver mRNA regulatory Ago2 microRNA complexes to endothelial cells via microparticles. Blood. 2013;122(2):253-261. doi: 10.1182/blood-2013-03-492801
  24. Zitvogel L, Regnault A, Lozier A et al. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nature Medicine. 1998;4(5):594-600. doi: 10.1038/nm0598-594
  25. Peinado H, Lavotshkin S, Lyden D. The secreted factors responsible for premetastatic niche formation: old sayings and new thoughts. Seminars in Cancer Biology. 2011;21(2):139-146. doi: 10.1016/j.semcancer.2011.01.002
  26. Ristorcelli E, Beraud E, Verrando P et al. Human tumor nanoparticles induce apoptosis of pancreatic cancer cells. FASEB Journal.2008;22(9):3358-3369. doi: 10.1096/fj.07-102855
  27. Ohshima K, Inoue K, Fujiwara A et al. Let-7 microRNA family is selectively secreted into the extracellular environment via exosomes in a metastatic gastric cancer cell line. PLoS One. 2010;5(10):e13247. doi: 10.1371/journal.pone.0013247
  28. Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT et al. Real-time quanitification of microRNAs by stem-loop RTPCR. Nucleic Acids Research. 2005;33:e179. doi: 10.1093/nar/gni178
  29. Várallyay E, Burgyán J, Havelda Z. MicroRNA detection by northern blotting using locked nucleic acid probes. Nature Protocols. 2008;3:190-196. doi: 10.1038/nprot.2007.528
  30. Erson AE, Petty EM. MicroRNAs in development and disease. Clinical Genetics. 2008;74:296-306. doi: 10.1111/j.1399-0004.2008.01076.x
  31. Zhang B, Pan X, Cobb GP, Anderson TA. MicroRNAs as oncogenes and tumor suppressors. Development Biology. 2007;302:1-12. doi: 10.1016/j.ydbio.2006.08.028
  32. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proceedings of the National Academy of Sciences. 2004;101:2999-3004. doi: 10.1073/pnas.0307323101
  33. Zhu W, Qin W, Atasoy U, Sauter ER. Circulating microRNAs in breast cancer and healthy subjects. BMC Research Notes. 2009;2:89. doi: 10.1186/1756-0500-2-89
  34. Resnick KE, Alder H, Hagan JP, Richardson DL, Croce CM, Cohn DE. The detection of differentially expressed microRNAs from the serum of ovarian cancer patients using a novel real-time PCR platform. Gynecologic Oncology. 2009;112(1):55-59. doi: 10.1016/j.ygyno.2008.08.036
  35. Chen ZH, Zhang GL, Li HR et al. A panel of five circulating microRNAs as potential biomarkers for prostate cancer. The Prostate. 2012;72(13):1443-1452. doi: 10.1002/pros.22495
  36. Huang Z, Huang D, Ni S, Peng Z, Sheng W, Du X. Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer. International Journal of Cancer. 2009;127(1):118-126. doi: 10.1002/ijc.25007
  37. Tsujiura M, Ichikawa D, Komatsu S et al. Circulating microRNAs in plasma of patients with gastric cancers. British Journal of Cancer. 2010;102(7):1174-1179. doi: 10.1038/sj.bjc.6605608
  38. Yamamoto Y, Kosaka N, Tanaka M et al. MicroRNA-500 as a potential diagnostic marker for hepatocellular carcinoma. Biomarkers. 2009;14(7):529-538. doi: 10.3109/13547500903150771
  39. Ho AS, Huang X, Cao H et al. Circulating miR-210 as a novel hypoxia marker in pancreatic cancer. Translational Oncology. 2010;3(2):109-113. doi: 10.1593/tlo.09256
  40. Hu Z, Chen X, Zhao Y et al. Serum microRNA signatures identified in a genome-wide serum microRNA expression profiling predict survival of nonsmall-cell lung cancer. Journal of Clinical Oncology. 2010;28(10):1721-1726. doi:/10.1200/jco.2009.24.9342
  41. Redova M, Poprach A, Nekvindova J et al. Circulating miR-378 and miR-451 in serum are potential biomarkers for renal cell carcinoma. Journal of Translational Medicine. 2012;10:55. doi: 10.1186/1479-5876-10-55
  42. Mao X, Sun Y, Tang J. Serum miR-21 is a diagnostic and prognostic marker of primary central nervous system lymphoma. Neurological Sciences. 2014;35(2):233-238. doi: 10.1007/s10072-013-1491-9
  43. Bottoni A, Zatelli-Ferracin M, Tagliati F, Piccin D, Vignali C et al. Identification of differentially expressed microRNAs by Microarray: a possible role for microRNA genes in pituitary adenomas. Journal of Cellular Physiology. 2007;210:370-377. doi: 10.1002/jcp.20832
  44. Cheng AM, Byrom MW, Shelton J, Ford LP. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Research. 2005;33:1290-1297. doi: 10.1093/nar/gki200
  45. Butz H, Likó I, Czirják S, Igaz P, Korbonits M, Rácz K, Patócs A. MicroRNA profile indicates downregulation of the TGFβ pathway in sporadic non-functioning pituitary adenomas. Pituitary. 2010;14:112-124. doi: 10.1007/s11102-010-0268-x
  46. Bottoni A, Piccin D, Tagliati F, Luchin A, Zatelli MC, degli Uberti EC. miR-15а, miR-16-1 down regulation in pituitary adenomas. Journal of Cellular Physiology. 2005;204:280-285. doi: 10.1002/jcp.20282
  47. Amaral FC, Torres N, Saggioro F et al. miRNAs differentially expressed in ACTH-secreting pituitary tumors. The Journal of Clinical Endocrinology and Metabolism. 2009;94:320-323. doi: 10.1210/jc.2008-1451
  48. Stilling G, Sun Z, Zhang S et al. MicroRNA differentially expression in ACTH-produsing pituitary tumors: up-regulation of MicroRNA-122 and 493 in pituitary carcinomas. Endocrine. 2010;38:67-75. doi: 10.1007/s12020-010-9346-0
  49. Huang W, Li MD. Differential allelic expression of dopamine D1 receptors gene is modulated by microRNA-504. Biological Psychiatry.2009;65:702-705. doi: 10.1016/j.biopsych.2008.11.024
  50. Tabon KE, Chang D, Kuzhikandathil EV. MicroRNA 142-3p mediated posttranscriptional regulation of D1 dopamine receptor expression. PloS ONE. 2012;7:e49288. doi: 10.1371/journal.pone.0049288
  51. Mao ZG, He DS, Zhou J et al. Differential expression of micro RNAs in GH-secreting pituitary adenomas. Diagnostic Pathology.2010,5:79. doi: 10.1186/1746-1596-5-79

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 

Address of the Editorial Office:

  • Alabyan Street, 13/1, Moscow, 127055, Russian Federation

Correspondence address:

  • Alabyan Street, 13/1, Moscow, 127055, Russian Federation

Managing Editor:

  • Tel.: +7 (926) 905-41-26
  • E-mail: e.gorbacheva@ter-arkhiv.ru

 

© 2018-2021 "Consilium Medicum" Publishing house


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies