Skip to main content
Log in

Sorption-desorption of 2,4-dichlorophenoxyacetic acid by wetland sediments

  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) is among the most frequently detected pesticides in the water-column of surface waters in Canada. Bottom sediments (0 to 15 cm) were collected in 41 wetlands across the prairie region of Canada and analyzed for organic carbon content (OC), pH, and texture. Using batch equilibrium experiments at 5 and 25°C, the herbicide sorption coefficient, Kd, was determined for 41 sediments, along with more comprehensive herbicide sorption and desorption isotherms for 7 of these 41 sediments. The 2,4-D Kd was positively correlated with OC and negatively correlated with sediment pH. A small (3%) significant increase in the 2,4-D Kd occurred when the temperature was at 25°C rather than 5°C. Desorption rates were faster for sediments with ≤ 2.4% OC and exhibited little or no hysteresis, compared to sediments with ≥ 5.9% OC that consistently exhibited hysteresis. We conclude that bottom sediments could serve as a source of 2,4-D to the water-column regardless of water temperature (5 to 25°C). However, the potential for accumulation of 2,4-D in wetland sediments would be small because between 62 and 100% of the 2,4-D sorbed by sediments was released after 8 hours.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Aksu, Z. and E. Kabasakal. 2005. Adsorption characteristics of 2,4-dichlorophenoxyacetic acid (2,4-D) from aqueous solution on powdered activated carbon. Journal of Environmental Science and Health, Part B 40: 545–70.

    CAS  Google Scholar 

  • Alam, J. B., A. K. Dikshit, and M. Bandyophadyay. 2002. Effect of different inorganic and organic compounds on sorption of 2,4-D and atrazine. Journal of Environmental Science and Health, Part B 37: 541–60.

    Article  CAS  Google Scholar 

  • Bekbölet, M., O. Yenigün, and I. Yücel. 1999. Sorption studies of 2,4-D on selected soils. Water Air and Soil Pollution 111: 75–88.

    Article  Google Scholar 

  • Bowman, B. T. 1981. Anomalies in the log Freundlich equation resulting in deviations in adsorption K values of pesticides and other organic compounds when the system of units is changed. Journal of Environmental Science and Health, Part B 16: 113–23.

    Article  CAS  Google Scholar 

  • Bowman, B. T. 1982. Conversion of Freundlich adsorption K values to the mole fraction format and the use of SY values to express relative adsorption of pesticides. Soil Science Society of America Journal 46: 740–43.

    CAS  Google Scholar 

  • Calvet, R. 1989. Adsorption of organic chemicals in soils. Environmental Health Perspectives 83: 145–77.

    Article  CAS  PubMed  Google Scholar 

  • Celis, R., M. C. Hermosin, L. Cox, and J. Cornejo. 1999. Sorption of 2,4-dicholorphenoxyacetic acid by model particles simulating naturally occurring soil colloids. Environmental Science and Technology 33: 1200–06.

    Article  CAS  Google Scholar 

  • Cessna, A. J. and J. A. Elliot. 2004. Seasonal variation of herbicide concentrations in prairie farm dugouts. Journal of Environmental Quality 33: 302–15.

    Article  CAS  PubMed  Google Scholar 

  • Cowardin, L. M., V. Carter, F. C. Golet, and E. T. LaRoe. 1979. Classification of Wetlands and Deepwater Habitats of the United States. U.S. Department of the Interior, Fish and Wildlife Service, Washington, DC, USA.

    Google Scholar 

  • Donald, D. B., A. J. Cessna, E. Sverko, and N. E. Glozier. 2007. Pesticides in surface drinking-water supplies of the northern Great Plains. Environmental Health Perspectives 115: 1183–91.

    Article  CAS  PubMed  Google Scholar 

  • Donald, D., N. Gurprasad, L. Quinnett-Abbott, and K. Cash. 2001. Diffuse geographic distribution of herbicides in northern prairie wetlands. Environmental Toxicology and Chemistry 20: 273–79.

    Article  CAS  PubMed  Google Scholar 

  • Donald, D. B. and J. Syrgiannis. 1995. Occurrence of pesticides in prairie lakes in Saskatchewan in relation to drought and salinity. Journal of Environmental Quality 24: 266–70.

    CAS  Google Scholar 

  • Donald, D. B., J. Syrgiannis, F. Hunter, and G. Weiss. 1999. Agricultural pesticides threaten the ecological integrity of northern prairie wetlands. Science of the Total Environment 231: 173–81.

    Article  CAS  PubMed  Google Scholar 

  • Gaultier, J., A. Farenhorst, and G. Crow. 2006. Spatial variability of soil properties and 2,4-D sorption in a hummocky field as affected by landscape position and soil depth. Canadian Journal of Soil Science 86: 89–95.

    CAS  Google Scholar 

  • Gaultier, J., A. Farenhorst, J. Cathcart, and T. Goddard, T. 2008. Regional assessment of herbicide sorption and degradation in two sampling years. Journal of Environmental Quality 37: 1825–36.

    Article  CAS  PubMed  Google Scholar 

  • Gee, G. W. and J. W. Bauder. 1986. Particle-size analysis. p. 383–412.In A. Klute (ed.) Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods. ASA/SSSA, Madison, WI, USA.

    Google Scholar 

  • Grover, R., S. R. Shewchuk, A. J. Cessna, A. E. Smith, and J. H. Hunter. 1985. Fate of 2,4-D iso-octyl ester application to a wheat field. Journal of Environmental Quality 14: 203–10.

    Article  CAS  Google Scholar 

  • Grover, R., D. T. Waite, A. J. Cessna, W. Nicholaichuk, and D. G. Irvin. 1997. Magnitude and persistence of herbicide residues in farm dugouts and ponds in the Canadian prairies. Environmental Toxicology and Chemistry 16: 638–43.

    Article  CAS  Google Scholar 

  • Gupta, V. K., I. A. Suhas, and V. K. Saini. 2006. Adsorption of 2,4-D and carbofuran pesticides using fertilizer and steel industry wastes. Journal of Colloid and Interface Science 299: 556–63.

    Article  CAS  PubMed  Google Scholar 

  • Haberhauer, G., L. Pheiffer, and M. H. Gerzabek. 2000. Influence of molecular structure on sorption of phenoxyalkanoic herbicides on soil and its particle size fractions. Journal of Agriculture and Food Chemistry 48: 3722–27.

    Article  CAS  Google Scholar 

  • Hermosin, M. C. and J. Cornejo. 1993. Organic chemicals in the environment:binding mechanism of 2,4-dichlorophenoxyacetic acid by organo-clays. Journal of Environmental quality 22: 325–31.

    Article  CAS  Google Scholar 

  • LaBaugh, J. W., T. C. Winter, G. A. Swanson, D. O. Rosenberry, R. D. Nelson, and N. H. Euliss. 1996. Changes in atmospheric circulation patterns affect mid-continent wetlands sensitive to climate. Limnology and Oceanography 41: 864–70.

    Article  CAS  Google Scholar 

  • Larney, F. J., A. J. Cessna, and M. S. Bullock. 1999. Herbicide transport on wind-eroded sediment. Journal of Environmental Quality 28: 1412–21.

    Article  CAS  Google Scholar 

  • Legendre, P. and L. Legendre. 1998. Numerical Ecology, 2nd edition. Elsevier, Amsterdam, The Netherlands.

    Google Scholar 

  • Lorah, M. M. and M. A. Voytek. 2004. Degradation of 1,1,2,2-tetrachloroethane and accumulation of vinyl chloride in wetland sediment microcosms and in situ porewater: biogeochemical controls and associations with microbial communities. Journal of Contaminant Hydrology 70: 117–49.

    Article  CAS  PubMed  Google Scholar 

  • Mallawatantri, A. P. and D. J. Mulla. 1992. Herbicide adsorption and organic carbon contents on adjacent low-input versus conventional farms. Journal of Environmental Quality 21: 546–51.

    Article  CAS  Google Scholar 

  • Ma, L., L. M. Southwick, G. H. Willis, and H. M. Selim. 1993. Hysteretic characteristics of atrazine adsorption-desorption by a Sharkey soil. Weed Science 41: 627–33.

    CAS  Google Scholar 

  • McKeague, J. A. 1978. Manual on Soil Sampling and Methods of Analysis. Canadian Society of Soil Science, Ottawa, ON, Canada.

    Google Scholar 

  • Nelson, D. E. and L. E. Sommers. 1982. Total carbon, organic carbon, and organic matter. p. 539–577.In A. L. Page (ed.) Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. ASA/SSSA, Madison, WI, USA.

    Google Scholar 

  • Picton, P. and A. Farenhorst. 2004. Factors influencing 2,4-D sorption and mineralization in soil. Journal of Environmental Science and Health, Part B 39: 367–79.

    Article  CAS  Google Scholar 

  • Rawn, D. F. K., T. H. J. Halldorson, B. D. Lawson, and D. C. G. Muir. 1999. A multi-year study of four herbicides in air and precipitation from a small prairie watershed. Journal of Environmental Quality 28: 898–906.

    Article  CAS  Google Scholar 

  • Sannino, F., M. T. Filazzola, A. Violante, and L. Gianfreda. 1999. Fate of herbicides influences by biotic and abiotic interactions. Chemosphere 39: 333–41.

    Article  CAS  Google Scholar 

  • Senseman, S. A. 2007. Herbicide Handbook, 9th edition. Weed Science Society of America, Lawrence, KS, USA.

    Google Scholar 

  • Seybold, C. A., W. Mersie, J. Huang, and C. McNamee. 2002. Soil redox, pH, temperature, and water-table patterns of a freshwater tidal wetland. Wetlands 22: 149–58.

    Article  Google Scholar 

  • Seybold, C. A., W. Mersie, C. McName, and D. Tierney. 1999. Release of Atrazine [14C] from two undisturbed submerged sediments over a two-year period. Journal of Agriculture and Food Chemistry 47: 2156–62.

    Article  CAS  Google Scholar 

  • Smith, G. W. 1995. A Critical Review of the Aerial and Ground Surveys of Breeding Waterfowl in North America. U.S. Department of the Interior, National Biological Service, Biological Science Report 5, Springfield, VA, USA.

    Google Scholar 

  • Spadotto, C. A. and A. G. Hornsby. 2003. Soil sorption of acidic pesticides. Modeling pH effects. Journal of Environmental Quality 32: 745–50.

    Article  Google Scholar 

  • Sparks, D. L. 1989. Kinetics of Soil Chemical Processes. Academic Press, San Diego, CA, USA.

    Google Scholar 

  • Ten Hulscher, T. E. M. and G. Cornelissen. 1996. Effect of temperature on sorption equilibrium and sorption kinetics of organic micropollutants — a review. Chemosphere 32: 609–26.

    Article  Google Scholar 

  • van Genuchten, M. T., J. M. Davidson, and P. J. Wierenga. 1974. An evaluation of kinetic and equilibrium equations for the prediction of pesticide movement through porous media. Soil Science Society of America Proceedings 38: 29–35.

    Article  Google Scholar 

  • Waite, D. T., A. J. Cessna, R. Grover, L. A. Kerr, and A. D. Snihura. 2002. Environmental concentrations of agricultural herbicides: 2,4-D and triallate. Journal of Environmental Quality 31: 129–44.

    Article  CAS  PubMed  Google Scholar 

  • Warner, B. G. and C. D. A. Rubec. 1997. The Canadian Wetland Classification System. National Wetlands Working Group, Wetlands Research Centre, University of Waterloo, Waterloo, ON, Canada.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaultier, J., Farenhorst, A., Kim, S.M. et al. Sorption-desorption of 2,4-dichlorophenoxyacetic acid by wetland sediments. Wetlands 29, 837–844 (2009). https://doi.org/10.1672/08-42.1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1672/08-42.1

Key Words

Navigation