Skip to main content
Log in

Effects of soil PH, redox potential, and elevation on survival ofSpartina patens planted at a west Central Florida salt marsh restoration site

  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

PlantingSpartina patens (Salt Meadow Cord Grass) is an integral part of restoring salt marshes along Tampa Bay, Florida, USA. Of the salt marsh species that are planted,S. patens often has the lowest survivorship. State managers have hypothesized that this low survivorship is related to transplant shock and to acidic soil conditions commonly found under dense stands ofCasuarina sp. (Australian Pine), an exotic invasive. This study documents plantedS. patens health and survivorship over 11 months at a restoration site previously dominated byCasuarina sp. Three plots of 100 plants each were established in varying soil pH, with each plot covering above and below the recommended elevation range forS. patens. Transplant shock occurred within the first thirty days after planting and affected overall survival.Spartina patens survival was not affected by soil pH (p=0.827) as evidenced by the presence of healthy individuals outside the plots, in soil pH ranging from 4.76 to 8.94. However, there was a sharp decline in plant health when redox potentials fell below −50 mV. Although elevation and redox potential were highly correlated (p<0.001, R2=0.736), plant health varied more with elevation (p<0.001, R2=0.387) than redox potential (p<0.001, R2=0.950), suggesting that elevation, while a good coarse predictor of site suitability, may not always be the best measure. Redox potential should be monitored, in addition to measuring elevation, to avoid planting in highly reduced areas. Furthermore, adjusting the lower limit of the target elevation range to a higher elevation will increase the amount of survivorship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature cited

  • Bandyopadhyay, B. K., S. R. Pezeshki, R. D. Delaune, and C. W. Lindau. 1993. Influence of soil oxidation-reduction potential and salinity on nutrition, −15 uptake, and growth ofSpartina patens. Wetlands 13:10–15.

    Article  Google Scholar 

  • Black, C. A. 1968. Soil-Plant Relationships. John Wiley and Sons, Inc., New York, NY, USA.

    Google Scholar 

  • Blume, L. J., B. A. Schumacher, P. W. Schaffer, K. A. Cappo, M. L. Papp, R. D. Van Remortel, D. S. Coffey, M. G. Johnson, and D. J. Chaloud. 1990. Handbook of Methods for Acid Deposition Studies Laboratory Analyses for Soil Chemistry. U.S. Environmental Protection Agency. Washington, DC, USA. EPA/600/4-90/023.

    Google Scholar 

  • Boesch, D. F. and R. E. Turner. 1984. Dependency of fisheries species on salt marshes: the role of food and refuge. Estuaries 7:460–468.

    Article  Google Scholar 

  • Borman, B. T. K. Cromack, Jr., and W. O. Russell, III. 1993. Influences of alder on soils and long-term ecosystem productivity. p. 47–56.In D. Hibbs, D. Debell, and R. F. Tarrant (eds.) Biology and Management of Alder. Oregon State University Press, Corvallis, OR, USA.

    Google Scholar 

  • Bradley, P. M. and J. T. Morris. 1990. Influence of oxygen and sulfide concentration on nitrogen uptake kinetics inSpartina alterniflora. Ecology 71:282–288.

    Article  CAS  Google Scholar 

  • Broome, S. W., E. D. Seneca, and W. W. Woodhouse Jr. 1988. Tidal salt marsh restoration. Aquatic Botany 32:1–22.

    Article  Google Scholar 

  • Broome, S. W., I. A. Mendelssohn, and K. L. McKee. 1995. Relative growth ofSpartina patens (Ait) Muhl. andScirpus olneyi Gray occurring in a mixed stand affected by salinity and flooding depth. Wetlands 15:20–30.

    Article  Google Scholar 

  • Burdick, D. M. and I. A. Mendelssohn. 1987. Waterlogging responses in dune, swale, and marsh populations ofSpartina patens under field conditions. Oecologia 74:321–329.

    Article  Google Scholar 

  • Cade, B. S., J. W. Terrell, and R. L. Schroeder. 1999. Estimating effects of limiting factors with regression quantiles. Ecology 80: 311–323.

    Google Scholar 

  • Cartaxana, P., I. Caçador, C. Vale, M. Falcão, and F. Catarino. 1999. Seasonal variation of inorganic nitrogen and net mineralization in a salt marsh ecosystem. Mangroves and Salt Marshes 3:127–134.

    Article  Google Scholar 

  • Clemens, J., L. C. Campbell, and S. Nursijah. 1983. Germination, growth, and mineral ion concentration ofCasuarina species under saline conditions. Australian Journal of Botany 31:1–9.

    Article  CAS  Google Scholar 

  • DeLaune, R. D. and S. R. Pezeshki 1991. Role of soil chemistry in vegetative ecology of wetlands. Trends in Soil Science 1:101–111.

    Google Scholar 

  • DeLaune, R. D., S. R. Pezeshki, and C. W. Lindau. 1998. Influence of soil redox potential on nitrogen uptake and growth of wetland oak seedlings. Journal of Plant Nutrition 21:757–768.

    Article  CAS  Google Scholar 

  • Estevez, E. D. and E. L. Mosura. 1985. Emergent vegetation. p. 248–278.In S. F. Treat, J. L. Simon, R. R. Lewis III, and R. L. Whitman Jr. (eds.) Proceedings of the Tampa Bay Area Scientific Information Symposium. Bellwether Press, Tampa, FL, USA.

    Google Scholar 

  • Ewing, K., K. L. McKee, and I. A. Mendelssohn. 1997. A field comparison of sublethal stress in the salt marsh grassSpartina patents. Estuaries 20:48–65.

    Article  CAS  Google Scholar 

  • Faulkner, S. P., W. H. Patrick, Jr., and R. P. Gambrell. 1989. Field techniques for measuring wetland soil parameters. Soil Science Society of America Journal 53:883–890.

    Article  CAS  Google Scholar 

  • Fernald, E. A. and E. D. Purdum. 1992. Atlas of Florida. University of Florida Press, Gainesville, FL, USA.

    Google Scholar 

  • Gleason, M. L. and J. C. Zieman. 1981. Influence of tidal inundation on internal oxygen supply ofSpartina alterniflora andSpartina patents. Estuarine, Coastal and Shelf Science 13:47–57.

    Article  Google Scholar 

  • Goodman, P. J. and W. T. Williams. 1961. Investigations into “Die-back” inSpartina townsendii Agg. III. physiological correlates of “die-back”. Journal of Ecology 49:391–398.

    Article  Google Scholar 

  • Hester, M. W., I. A. Mendelssohn, and K. L. McKee. 1996. Intraspecific variation in salt tolerance and morphology in the coastal grassSpartina patens (Poaceae). American Journal of Botany 83: 1521–1527.

    Article  Google Scholar 

  • Hester, M. W., I. A. Mendelssohn, and K. L. McKee. 2001. Species and population variation to salinity stress inPanicum hemitomon, Spartina patens, andSpartina alterniflora: morphological and physiological constraints Environmental and Experimental Botany 46:277–297.

    Article  CAS  Google Scholar 

  • Hyde, A. G. and H. F. Huckle. 1983. Soil Survey of Manatee County Florida. U.S. Department of Agriculture, Soil Conservation Service, Washington, DC, USA.

    Google Scholar 

  • Johnson, A. F. and M. G. Barbour. 1990. Dunes and maritime forests. p. 429–480.In R. L. Meyers and J. J. Ewel (eds.) Ecosystems of Florida. University of Central Florida Press, Orlando, FL, USA.

    Google Scholar 

  • Koch, M. S., I. A. Mendelssohn, and K. L. McKee. 1990. Mechanisms for the hydrogen sulfide-induced growth limitation ofSpartina alterniflora andPanicum hemitomon. Limnology and Oceanography 35:399–408.

    Article  CAS  Google Scholar 

  • Larcher, W. 1995. Physiological Plant Ecology, third edition. Springer, Berlin, Germany.

    Google Scholar 

  • Martinez-Carrasco, R., P. Perez, L. L. Handley, C. M. Scrimgeour, M. Igual, I. Martin del Molino, and L. Sanchez de la Puente. 1998. Regulation of growth, water use efficiency and δ13C by the nitrogen source inCasuarina equisetifolia Forst & Forst. Plant, Cell and Environment 21:531–534.

    Article  Google Scholar 

  • Masscheleyn, P. H., R. D. DeLaune, and W. H. Patrick, Jr. 1990. Transformations of selenium as affected by sediment oxidation-reduction potential and pH. Environmental Science and Technology 24:91–97.

    Article  CAS  Google Scholar 

  • McBride, M. 1994. Environmental Chemistry of Soils. Oxford University Press, New York, NY, USA.

    Google Scholar 

  • Mendelssohn, I. A. and K. L. McKee. 1992. Indicators of environmental stress in wetland plants. p. 603–624.In D. H. McKenzie, D. E. Hyatt, and V. J. McDonald (eds.) Ecological Indicators. Elsevier Applied Sciences, New York, NY, USA.

    Google Scholar 

  • Mitsch, W. J. and J. G. Gosselink. 2000. Wetlands, Third Edition. John Wiley and Sons, New York, NY, USA.

    Google Scholar 

  • Montague, C. L. and R. G. Wiegert. 1990. Salt marshes. p. 481–516.In R. L. Meyers and J. J. Ewel (eds.) Ecosystems of Florida. University of Central Florida Press, Orlando, FL, USA.

    Google Scholar 

  • Naidoo, G., K. L. McKee, and I. A. Mendelssohn. 1992. Anatomical and metabolic responses to waterlogging and salinity inSpartina alterniflora andS. patens (Poaceae). American Journal of Botany 79:765–770.

    Article  CAS  Google Scholar 

  • Patrick, W. H., Jr. R. D. DeLaune, and F. J. Peterson. 1974. Nitrogen utilization by rice using15N depleted ammonium sulfate. Agronomy Journal 66:819–820.

    Google Scholar 

  • Patrick, W. H., Jr. and A. Jugsujinda. 1992. Sequential reduction and oxidation of inorganic nitrogen, manganese, and iron in flooded soil. Soil Science Society of America Journal 56:1071–1073.

    Article  CAS  Google Scholar 

  • Patrick, W. H., Jr. R. P. Gambrell, and S. P. Faulkner. 1996. Redox measurements of soils. p. 1255–1273.In Methods of Soil Analysis Part 3, Chemical Methods. Soil Science Society of America and American Society of Agronomy, Madison, WI, USA. SSSA Book Series Number 5.

    Google Scholar 

  • Pezeshki, S. R. and R. D. DeLaune. 1993. Effects of soil hypoxia and salinity on gas exchange and growth ofSpartina patens. Marine Ecology Progress Series 96:75–81.

    Article  Google Scholar 

  • Pezeshki, S. R. and R. D. DeLaune. 1996. Response ofSpartina alterniflora andSpartina patens to rhizosphere oxygen deficiency. Acta Oecologia 17:365–378.

    Google Scholar 

  • Pezeshki, S. R., S. W. Matthews, and R. D. DeLaune. 1991. Root cortex structure and metabolic responses ofSpartina patens to soil redox conditions. Environmental and Experimental Botany. 31:91–97.

    Article  Google Scholar 

  • Pezeshki, S. R., J. H. Pardue, and R. D. DeLaune. 1993. The influence of soil oxygen deficiency on alcohol dehydrogenase activity, root porosity, ethylene production, and photosynthesis inSpartina patens. Environmental and Experimental Botany 33:565–573.

    Article  CAS  Google Scholar 

  • Pezeshki, S. R., P. H. Anderson, and R. D. DeLaune. 2000. Effects of pre-conditioning onPanicum hemitomon andSagittaria lancifolia used for wetland restoration. Restoration Ecology 8:57–64.

    Article  Google Scholar 

  • Piehler, M. F., C. A. Currin, R. Cassanova, and H. W. Paerl. 1998. Development and N2 fixing activity of the benthic microbial community in transplantedSpartina alterniflora marshes in North Carolina. Restoration Ecology 6:290–296.

    Article  Google Scholar 

  • Rietveld, R. J. 1989. Transplanting stress in bareroot conifer seedlings: its development and progression to establishment. Northern Journal of Applied Forestry 6:99–107.

    Google Scholar 

  • Riley, J. P. and G. Skirrow. 1975. Chemical Oceanography, Second Edition, Volume 2. Academic Press, New York, NY, USA.

    Google Scholar 

  • Silander, J. A. 1984. The genetic basis of the ecological amplitude ofSpartina patens III. Allozyme variation. Botanical Gazette 145: 569–577.

    Article  Google Scholar 

  • Silander, J. A. and J. Antonovies. 1979. The genetic basis of the ecological amplitude ofSpartina patens I. Morphometric and physiological traits. Evolution 33:1114–1127.

    Article  Google Scholar 

  • South, D. B. and J. B. Zwolinski. 1997. Transplant stress index: a proposed method of quantifying planting check. New Forests 13: 315–328.

    Article  Google Scholar 

  • Sparks, D. L. 1995. Environmental Soil Chemistry. Academic Press, San Diego, CA, USA.

    Google Scholar 

  • Stoneham, J. and P. Thoday. 1985. Some physiological stresses associated with tree transplanting. Scientific Horticulture 36:83–91.

    Google Scholar 

  • Struve, D. K. and R. J. Joly. 1992. Transplanted red oak seedlings mediate transplant shock by reducing leaf surface area and altering carbon allocation. Canadian Journal of Forest Research 22:1441–1448.

    Article  Google Scholar 

  • The Conservation Foundation. 1988. Protecting America's Wetlands: an Action Agenda. The Conservation Foundation, Washington, DC, USA.

    Google Scholar 

  • Thomson, J. D., G. Weiblen, B. A. Thomson, S. Alfaro, and P. Legendre. 1996. Untangling multiple factors in spatial distributions: lilies, gophers, and rocks. Ecology 77:1698–1715.

    Article  Google Scholar 

  • Tiner, R. H. 1993. Field Guide to Coastal Wetland Plants of the Southeastern United States. The University of Massachusetts Press, Amherst, MA, USA.

    Google Scholar 

  • Torrey, J. G. 1982. Casuarina: actinorhizal nitrogen fixing tree of the tropics. p. 427–439.In P. H. Graham and S. C. Harris (eds.) Biological Nitrogen Fixation Technology for Tropical Agriculture. International Center for Tropical Agriculture, Cali, Columbia.

    Google Scholar 

  • Van Cleve, K., L. A. Viereck, and R. L. Schlentner. 1971. Accumulations of nitrogen in alder (Alnus) ecosystems near Fairbanks, Alaska. Arctic and Alpine Research 3:101–114.

    Article  Google Scholar 

  • Webb, E. C. and I. A. Mendelssohn. 1996. Factors affecting vegetation dieback of an oligohaline marsh in coastal Louisiana: field manipulation of salinity and submergence. American Journal of Botany 83:1429–1434.

    Article  Google Scholar 

  • Woodhouse, W. W., Jr., E. D. Seneca, and S. W. Broome. 1974. Propagation ofSpartina alterniflora for substrate stabilization and salt marsh development. U.S. Army, Coastal Engineering Research Center, Fort Belvoir, VA, USA. Technical Report 76-2.

    Google Scholar 

  • Zaczek, J. J., K. C. Steiner, and T. W. Bowersox. 1997. Northern red oak planting stock: 6-year results. New Forests 13:177–191.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anastasiou, C.J., Brooks, J.R. Effects of soil PH, redox potential, and elevation on survival ofSpartina patens planted at a west Central Florida salt marsh restoration site. Wetlands 23, 845–859 (2003). https://doi.org/10.1672/0277-5212(2003)023[0845:EOSPRP]2.0.CO;2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1672/0277-5212(2003)023[0845:EOSPRP]2.0.CO;2

Key Words

Navigation