Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-19T21:20:50.285Z Has data issue: false hasContentIssue false

Progress and future directions in archosaur phylogenetics

Published online by Cambridge University Press:  20 May 2016

Christopher A. Brochu*
Affiliation:
Department of Geoscience, University of Iowa, Iowa City 52242,

Abstract

The basic structure of archosaurian phylogeny is understood to include two primary crown-group lineages—one leading to living crocodiles and including a broad diversity of Triassic animals (e.g., phytosaurs, rauisuchians, aetosaurs), and another leading to dinosaurs (living and extinct). These lineages were established by the middle Triassic. A few extinct groups remain controversial, such as the pterosaurs, and debate persists over the phylogenetic relationships among extant bird lineages, which have proved difficult to resolve, and divergence timing estimates within Aves and Crocodylia remain the source of contention. A few analyses support a close relationship between archosaurs and turtles, or even a nesting of turtles within Archosauria. All sources of information used to resolve these issues have weaknesses, and these problems all involve highly derived lineages when they first appear in the fossil record.

Type
Research Article
Copyright
Copyright © The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bennett, S. C. 1996. The phylogenetic position of the Pterosauria within the Archosauromorpha. Zoological Journal of the Linnean Society, 118:261308.CrossRefGoogle Scholar
Benton, M. J. 1984. Classification and phylogeny of the diapsid reptiles. Philosophical Transactions of the Royal Society of London, 302:605720.Google Scholar
Benton, M. J. 1995. Late Triassic to Middle Jurassic extinctions among continental tetrapods: testing the pattern, p. 366397. In Fraser, N. C. and Sues, H. D. (eds.), In the Shadow of the Dinosaurs: Early Mesozoic Tetrapods. Cambridge University Press, New York.Google Scholar
Benton, M. J. 1999a. Scleromochlus taylori and the origin of dinosaurs and pterosaurs. Philosophical Transactions of the Royal Society of London B, 354:14231446.CrossRefGoogle Scholar
Benton, M. J. 1999b. Early origins of modern birds and mammals: molecules vs. morphology. BioEssays, 21:10431051.3.0.CO;2-B>CrossRefGoogle Scholar
Benton, M. J., and Clark, J. M. 1988. Archosaur phylogeny and the relationships of the Crocodylia, p. 295338. In Benton, M. J. (ed.). The Phylogeny and Classification of the Tetrapods. Volume 1. Clarendon Press, Oxford.Google Scholar
Benton, M. J., Juul, L., Storrs, G. W., and Galton, P. M. 2000. Anatomy and systematics of the prosauropod dinosaur Thecodontosaurus antiquus from the upper Triassic of southwest England. Journal of Vertebrate Paleontology, 20:77108.CrossRefGoogle Scholar
Bleiweiss, R. 1998. Fossil gap analysis supports early Tertiary origin of trophically diverse avian orders. Geology, 26:323326.2.3.CO;2>CrossRefGoogle Scholar
de Braga, M., and Rieppel, O. 1997. Reptile phylogeny and the interrelationships of turtles. Zoological Journal of the Linnean Society, 120:281354.CrossRefGoogle Scholar
Brinkman, D. B., and Sues, H.-D. 1987. A staurikosaurid dinosaur from the Upper Triassic Ischigualasto Formation of Argentina and the relationships of the Staurikosauridae. Palaeontology, 30:493503.Google Scholar
Brochu, C. A. 1997. Morphology, fossils, divergence timing, and the phylogenetic relationships of Gavialis . Systematic Biology, 46:479522.CrossRefGoogle ScholarPubMed
Brochu, C. A. 2000. Phylogenetic relationships and divergence timing of Crocodylus based on morphology and the fossil record. Copeia, 2000:657673.CrossRefGoogle Scholar
Brochu, C. A. In press. Congruence between physiology, phylogenetics, and the fossil record on crocodylian historical biogeography. In Grigg, G., Seebacher, F., and Franklin, C. E. (eds.), Crocodilian Biology and Evolution. Surrey Beatty and Sons, Sydney.Google Scholar
Brochu, C. A., and Densmore, L. D. In press. Crocodile phylogenetics: a review of current progress. In Grigg, G., Seebacher, F., and Franklin, C. E. (eds.), Crocodilian Biology and Evolution. Surrey Beatty and Sons, Sydney.Google Scholar
Bromham, L., Phillips, M. J., and Penny, D. 1999. Growing up with dinosaurs: molecular dates and the mammalian radiation. Trends in Ecology and Evolution, 14:113118.CrossRefGoogle ScholarPubMed
Buckley, G. A., and Brochu, C. A. 1999. An enigmatic new crocodile from the Upper Cretaceous of Madagascar, p. 149175. In Unwin, D. M. (ed.), Special Papers in Palaeontology 60: Cretaceous Fossil Vertebrates, Palaeontological Association, London.Google Scholar
Buffetaut, E. 1982. Radiation évolutive, paléoécologie et biogéographie des crocodiliens mesosuchiens. Memoires de la Societé Geologique de France, 60:188.Google Scholar
Busbey, A. B. 1994. The structural consequences of skull flattening in crocodilians, p. 173192. In Thomason, J. J. (ed.), Functional Morphology in Vertebrate Paleontology. Cambridge University Press, New York.Google Scholar
Buscalioni, A. D., Ortega, F., Weishampel, D. B., and Jianu, C. M. 2001. A revision of the crocodyliform Allodaposuchus precedens from the Upper Cretaceous of the Hateg Basin, Romania. Its relevance in the phylogeny of Eusuchia. Journal of Vertebrate Paleontology, 21:7486.CrossRefGoogle Scholar
Cadbury, D. 2000. Terrible Lizard: The First Dinosaur Hunters and the Birth of a New Science. Henry Holt and Company, New York, 374 p.Google Scholar
Cantino, P. D., and de Queiroz, K. 2000. PhyloCode: A Phylogenetic Code of Biological Nomenclature, http://www.ohiou.edu/phylocode/Google Scholar
Carrano, M. T. 1998. Locomotion in non-avian dinosaurs: integrating data from hindlimb kinematics, in vivo strains, and bone morphology. Paleobiology, 24:450469.CrossRefGoogle Scholar
Carrier, D. 1991. Conflict in the hypaxial musculo-skeletal system: documenting an evolutionary constraint. American Zoologist, 31:644654.CrossRefGoogle Scholar
Carrier, D., and Farmer, C. G. 2000. The evolution of pelvic aspiration in archosaurs. Paleobiology, 26:271293.2.0.CO;2>CrossRefGoogle Scholar
Chatterjee, S. 1999. Protoavis and the early evolution of birds. Palaeontographica Abt. A, 254:1100.Google Scholar
Chen, P.-J., Dong, Z.-M., and Zhen, S.-N. 1998. An exceptionally well-preserved theropod dinosaur from the Yixian Formation of China. Nature, 391:147–120.CrossRefGoogle Scholar
Chiappe, L. M. 1995. The first 85 million years of avian evolution. Nature, 378:349355.CrossRefGoogle Scholar
Chiappe, L. M. 1997. Aves, p. 3238. In Currie, P. J. and Padian, K. (eds.), Encyclopedia of Dinosaurs. Academic Press, San Diego.Google Scholar
Chiappe, L. M. 2001. Phylogenetic relationships among basal birds, p. xxx. In Gauthier, J. A. (ed.), New Perspectives on the Origin and Early Evolution of Birds. Yale University Press, New Haven.Google Scholar
Chiappe, L., Norell, M., and Clark, J. 1996. Phylogenetic position of Mononykus (Aves: Alvarezsauridae) from the Late Cretaceous of the Gobi Desert. Memoirs of the Queensland Museum, 39:557582.Google Scholar
Chiappe, L. M., Norell, M. A., and Clark, J. M. 1998. The skull of a relative of the stem-group bird Mononykus . Nature, 392:275278.CrossRefGoogle Scholar
Chinnery, B. J., and Weishampel, D. B. 1998. Montanoceratops cerorhynchus (Dinosauria: Ceratopsia) and relationships among basal neoceratopsians. Journal of Vertebrate Paleontology, 18:569585.CrossRefGoogle Scholar
Clark, J. M. 1994. Patterns of evolution in Mesozoic Crocodyliformes, p. 8497. In Fraser, N. C. and Sues, H.-D. (eds.), In the Shadow of the Dinosaurs. Cambridge University Press, New York.Google Scholar
Clark, J. M., and Norell, M. A. 1992. The Early Cretaceous crocodylomorph Hylaeochampsa vectiana from the Wealden of the Isle of Wight. American Museum Novitates, 3032:119.Google Scholar
Clark, J. M., Perle, A., and Norell, M. A. 1994. The skull of Erlicosaurus andrewsi, a Late Cretaceous “segnosaur” (Theropoda: Therezinosauridae) from Mongolia. American Museum Novitates, 3115:139.Google Scholar
Clark, J. M., Sues, H.-D., and Berman, D. S. 2000. A new specimen of Hesperosuchus agilis from the Upper Triassic of New Mexico and the interrelationships of basal crocodylomorph archosaurs. Journal of Vertebrate Paleontology, 20:683704.CrossRefGoogle Scholar
Colbert, E. H. 1968. Men and Dinosaurs. E. P. Dutton & Co., New York, 283 pp.Google Scholar
Cooper, A., and Penny, D. 1997. Mass survival of birds across the Cretaceous-Tertiary Boundary. Science, 275:11091113.CrossRefGoogle ScholarPubMed
Cracraft, J. 1974. Phylogeny and evolution of the ratite birds. Ibis, 116:494521.CrossRefGoogle Scholar
Cracraft, J. 1988. The major clades of birds, p. 339361. In Benton, M. J. (ed.), The Phylogeny and Classification of the Tetrapods. Volume 1. Clarendon Press, Oxford.Google Scholar
Cracraft, J. 2001. Avian evolution, Gondwana biogeography and the Cretaceous-Tertiary mass extinction event. Proceedings of the Royal Society of London B, 268:459469.CrossRefGoogle ScholarPubMed
Cruickshank, A. R. I. 1979. The ankle joint in some early archosaurs. South African Journal of Science, 75:168178.Google Scholar
Currie, P. J., and Carpenter, K. 2000. A new specimen of Acrocanthosaurus atokensis (Theropoda, Dinosauria) from the Lower Cretaceous Antlers Formation (Lower Cretaceous, Aptian) of Oklahoma, USA. Geodiversitas, 22:207246.Google Scholar
Currie, P. J., and Padian, K. (eds.). 1997. Encyclopedia of Dinosaurs. Academic Press, San Diego, 869 pp.Google Scholar
Densmore, L. D. 1983. Biochemical and immunological systematics of the order Crocodilia, p. 397465. In Hecht, M. K., Wallace, B. and Prance, G. H. (eds.), Evolutionary Biology. Volume 16. Plenum Press, New York.CrossRefGoogle Scholar
Densmore, L. D., and Dessauer, H. C. 1984. Low levels of protein divergence detected between Gavialis and Tomistoma: evidence for crocodilian monophyly. Comparative Biochemistry and Physiology, 77B:715720Google Scholar
Densmore, L. D., and Owen, R. D. 1989. Molecular systematics of the order Crocodilia. American Zoologist, 29:831841.CrossRefGoogle Scholar
Densmore, L. D., and White, P. S. 1991. The systematics and evolution of the Crocodilia as suggested by restriction endonuclease analysis of mitochondrial and nuclear ribosomal DNA. Copeia, 1991:602615.CrossRefGoogle Scholar
Desmond, A. 1982. Archetypes and Ancestors: Palaeontology in Victorian London, 1850–1875. University of Chicago Press, Chicago, 287 pp.Google Scholar
Dilkes, D. W. 1998. The early Triassic rhynchosaur Mesosuchus browni and the interrelationships of basal archosauromorph reptiles. Philosophical Transactions of the Royal Society of London B, 353:501541.CrossRefGoogle Scholar
Dyke, G. J. 1998. Does archosaur phylogeny hinge on the ankle joint? Journal of Vertebrate Paleontology, 18:558562.CrossRefGoogle Scholar
Dyke, G. J., and Mayr, G. 1999. Did parrots exist in the Cretaceous period? Nature, 399:317318.Google Scholar
Easteal, S. 1999. Molecular evidence for the early divergence of placental mammals. BioEssays, 21:10521058.3.0.CO;2-6>CrossRefGoogle ScholarPubMed
Efimov, M. B. 1982. A two-fanged crocodile from the Upper Cretaceous in Tadzhikistan. Paleontological Journal, 1982:103105.Google Scholar
Erickson, B. R. 1972. Albertochampsa langstoni, gen. et sp. nov., a new alligator from the Cretaceous of Alberta. Scientific Publications of the Science Museum of Minnesota, New Series, 2:113.Google Scholar
Erickson, G. M., and Brochu, C. A. 1999. How the “terror crocodile” grew so big. Nature, 398:205206.CrossRefGoogle Scholar
Ericson, P. G. P. 1997. Systematic relationships of the Palaeogene family Presbyornithidae (Aves: Anseriformes). Zoological Journal of the Linnean Society 121:429483.Google Scholar
Evans, S. E. 1989. New material of Cteniogenys (Reptilia: Diapsida; Jurassic) and a reassessment of the phylogenetic position of the genus. Neues Jahrbuch für Geologie und Paläontologie Monatschefte, 1989:577589.CrossRefGoogle Scholar
Evans, S. E. 1991. The postcranial skeleton of the choristodere Cteniogenys (Reptilia: Diapsida) from the Middle Jurassic of England. Geobios, 25:187199.CrossRefGoogle Scholar
Evans, S. E., and Hecht, M. K. 1993. A history of an extinct reptilian clade, the Choristodera: longevity, Lazarus taxa, and the fossil record. Evolutionary Biology, 27:323338.Google Scholar
Feduccia, A. 1995. Explosive radiation in Tertiary birds and mammals. Science, 267:637638.CrossRefGoogle Scholar
Feduccia, A. 1996. The Origin and Evolution of Birds. Yale University Press, 420 pp.Google Scholar
Flynn, J. J., Parrish, J. M., Rakotosamimanana, B., Simpson, W. F., Whatley, R. L., and Wyss, A. R. 1999. A Triassic fauna from Madagascar, including early dinosaurs. Science, 286:763765.CrossRefGoogle ScholarPubMed
Forster, C. A. 1990. The cranial morphology and systematics of Triceratops with a preliminary analysis of ceratopsian phylogeny. Unpublished Ph.D. dissertation, University of Pennsylvania, 227 pp.Google Scholar
Forster, C. A. 1997. Phylogeny of the Iguanodontia and Hadrosauridae. Journal of Vertebrate Paleontology, 17(3):47A.Google Scholar
Forster, C. A., Sampson, S. D., Chiappe, L. M., and Krause, D. W. 1998. The theropod ancestry of birds: new evidence from the Late Cretaceous of Madagascar. Science, 279:19151919.CrossRefGoogle Scholar
Galton, P. M. 1999. Sex, sacra and Sellosaurus gracilis (Saurischia, Sauropodomorpha, Upper Triassic, Germany)—or why the character “two sacral vertebrae” is plesiomorphic for Dinosauria. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 213:1955.CrossRefGoogle Scholar
Gatesy, J., and Amato, G. D. 1992. Sequence similarity of 12S ribosomal segment of mitochondrial DNAs of gharial and false gharial. Copeia, 1992:241244.CrossRefGoogle Scholar
Gatesy, S. M., and Middleton, K. M. 1997. Bipedalism, flight, and the evolution of theropod locomotor diversity. Journal of Vertebrate Paleontology, 17:308329.CrossRefGoogle Scholar
Gauthier, J. A. 1984. A cladistic analysis of the higher systematic categories of Diapsida. Unpublished Ph.D. dissertation, University of California at Berkeley, 564 p.Google Scholar
Gauthier, J. A. 1986. Saurischian monophyly and the origin of birds. Memoirs of the California Academy of Sciences, 8:155.Google Scholar
Gauthier, J., and Padian, K. 1985. Phylogenetic, functional, and aerodynamic analyses of the origin of birds and their flight, p. 185197. In Hecht, M. K., Ostrom, J. H., Viohl, G., and Wellnhofer, P. (eds.), The Beginnings of Birds, Freunde des Jura-Museum, Eichstatt.Google Scholar
Gauthier, J., Kluge, A. G., and Rowe, T. 1988. Amniote phylogeny and the importance of fossils. Cladistics, 4:105209.CrossRefGoogle Scholar
Gorr, T. A., Mable, B. K., and Kleinschmidt, T. 1998. Phylogenetic analysis of reptilian hemoglobins: trees, rates, and divergences. Journal of Molecular Evolution, 47:471485.CrossRefGoogle ScholarPubMed
Gower, D. J. 1996. The tarsus of erythrosuchid archosaurs, and implications for early diapsid phylogeny. Zoological Journal of the Linnean Society, 116:347375.CrossRefGoogle Scholar
Gower, D. J. 2000. Rauisuchian archosaurs (Reptilia, Diapsida): an overview. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 218:447488.CrossRefGoogle Scholar
Gower, D. J., and Sennikov, A. G. 1997. Sarmatosuchus and the early history of the Archosaruia. Journal of Vertebrate Paleontology, 17:6073.CrossRefGoogle Scholar
Gower, D. J., and Sennikov, A. G. 2000. Early archosaurs from Russia, p. 140159. In Benton, M. J., Shishkin, M. A., Unwin, D. M., and Kurochkin, E. N. (eds.), The Age of Dinosaurs in Russia and Mongolia. Cambridge University Press, New York.Google Scholar
Gower, D. J., and Weber, E. 1998. The braincase of Euparkeria and the evolutionary relationships of birds and crocodiles. Biological Reviews, 73:367411.CrossRefGoogle Scholar
Gower, D. J., and Wilkinson, M. 1996. Is there any consensus on basal archosaur phylogeny? Proceedings of the Royal Society of London B, 263:13991406.Google Scholar
Gregory, W. K. 1946. Pareiasaurs versus placodonts as near ancestors to the turtles. Bulletin of the American Museum of Natural History, 86:279326.Google Scholar
Groth, J. G., and Barrowclough, G. F. 1999. Basal divergences in birds and the phylogenetic utility of the nuclear RAG-1 gene. Molecular Phylogenetics and Evolution, 12:115123.CrossRefGoogle ScholarPubMed
Härlid, A., Janke, A., and Arnason, U. 1998. The complete mitochondrial genome of Rhea americana and early avian divergences. Journal of Molecular Evolution, 46:669679.CrossRefGoogle ScholarPubMed
Härlid, A., and Arnason, U. 1999. Analyses of mitochondrial DNA nest ratite birds within the Neognathae: supporting a neotenous origin of ratite morphological characters. Proceedings of the Royal Society of London B, 266:305309.CrossRefGoogle Scholar
Hass, C. A., Hoffman, M. A., Densmore, L. D., and Maxson, L. R. 1992. Crocodilian evolution: insights from immunological data. Molecular Phylogenetics and Evolution, 1:193201.CrossRefGoogle ScholarPubMed
Head, J. J. 1998. A new species of basal hadrosaurid (Dinosauria, Ornithischia) from the Cenomanian of Texas. Journal of Vertebrate Paleontology, 18:718738.CrossRefGoogle Scholar
Hedges, S. B., and Poling, L. L. 1999. A molecular phylogeny of reptiles. Science, 283:9981001.CrossRefGoogle ScholarPubMed
Hedges, S. B., Parker, P. H., Sibley, C. G., and Kumar, S. 1996. Continental breakup and the ordinal diversification of birds and mammals. Nature, 381:226229.CrossRefGoogle ScholarPubMed
Holtz, T. R. 1994. The phylogenetic position of the Tyrannosauridae: implications for theropod systematics. Journal of Paleontology, 65:11001117.CrossRefGoogle Scholar
Holtz, T. R. 1999. Consensus and conflict in current coelurosaur cladograms. Journal of Vertebrate Paleontology, 19(3):52A.Google Scholar
Holtz, T. R. 2000. A new phylogeny of the carnivorous dinosaurs. Gaia, 15:561.Google Scholar
Holtz, T. R., and Padian, K. 1995. Definition and diagnosis of Theropoda and related taxa. Journal of Vertebrate Paleontology, 15(3):35A.Google Scholar
Hope, S. 1998. The Mesozoic record of the Neornithes. Journal of Vertebrate Paleontology, 18(3):51A.Google Scholar
Horner, J. R., de Ricqlès, A., and Padian, K. 1999. Variation in dinosaur skeletochronology indicators: implications for age assessment and physiology. Paleobiology, 25:295304.CrossRefGoogle Scholar
Hou, L., Martin, L. D., Zhou, Z., and Feduccia, A. 1996. Early adaptive radiation of birds: evidence from fossils from northeastern China. Science, 274:11641167.CrossRefGoogle ScholarPubMed
Hughes, S., and Mouchiroud, D. 2001. High evolutionary rates in nuclear genes of squamates. Journal of Molecular Evolution, 53:7076.CrossRefGoogle ScholarPubMed
Hutchinson, J. R. 2001a. The evolution of pelvic osteology and soft tissues on the line to extant birds (Neornithes). Zoological Journal of the Linnean Society, 131:123168.CrossRefGoogle Scholar
Hutchinson, J. R. 2001b. The evolution of femoral osteology and soft tissues on the line to extant birds (Neornithes). Zoological Journal of the Linnean Society, 131:169197.CrossRefGoogle Scholar
Janke, A., Erpenbeck, D., Nilsson, M., and Arnason, U. 2001. The mitochondrial genomes of the iguana (Iguana iguana) and the caiman (Caiman crocodylus): implications for amniote phylogeny. Proceedings of the Royal Society of London B, 268:623631.CrossRefGoogle ScholarPubMed
Ji, Q., Currie, P. J., Norell, M. A., and Ji, S.-A. 1998. Two feathered dinosaurs from northeastern China. Nature, 393:753761.Google Scholar
Ji, Q., Norell, M. A., Gao, K.-Q., S.-A.J.i, , and Ren, D. 2001. The distribution of integumentary structures in a feathered dinosaur. Nature, 410:10841088.CrossRefGoogle Scholar
Johnson, K. P. 2001. Taxon sampling and the phylogenetic position of Passeriformes: evidence from 916 avian cytochrome b sequences. Systematic Biology, 50:128136.CrossRefGoogle ScholarPubMed
Jones, T. D., Ruben, J. A., Martin, L. D., Kurochkin, E. N., Feduccia, A., Maderson, P. F. A., Hillenius, W. J., Geist, N. R., and Alifanov, V. 2000. Non-avian feathers in a Late Triassic archosaur. Science, 288:22022204.CrossRefGoogle Scholar
Juul, L. 1994. The phylogeny of basal archosaurs. Palaeontographica Africana, 31:138.Google Scholar
Kälin, J. A. 1955b. Zur Stammesgeschichte der Crocodilia. Revue Suisse de Zoologie, 62:347356.CrossRefGoogle Scholar
Kellner, A. W. A., and Langston, W. 1999. Cranial remains of Quetzalcoatlus (Pterosauria, Azhdarchidae) from Late Cretaceous sediments of Big Bend National Park, Texas. Journal of Vertebrate Paleontology, 16:222231.CrossRefGoogle Scholar
Krause, D. W., Rogers, R. R., Forster, C. A., Hartman, J. H., Buckley, G. A., and Sampson, S. D. 1999. The Late Cretaceous vertebrate fauna of Madagascar: implications for Gondwanan paleobiogeography. GSA Today, 9:17.Google Scholar
Kumar, S., and Hedges, S. B. 1998. A molecular timescale for vertebrate evolution. Nature, 392:917920.CrossRefGoogle ScholarPubMed
Kumazawa, Y., and Nishida, M. 1995. Variations in mitochondrial tRNA gene organization of reptiles as phylogenetic markers. Molecular Biology and Evolution 12:759772.Google Scholar
Kurochkin, E. N. 2000. Mesozoic birds of Mongolia and the former USSR, p. 533559. In Benton, M. J., Shishkin, M. A., Unwin, D. M., and Kurochkin, E. N. (eds.), The Age of Dinosaurs in Russia and Mongolia. Cambridge University Press, New York.Google Scholar
Langston, W. 1973. The crocodilian skull in historical perspective, p. 263284. In Gans, C. and Parsons, T. (eds.), Biology of the Reptilia. Volume 4. Academic Press, London.Google Scholar
Larsson, H. C. E. 1998. A new method for comparing ontogenetic and phylogenetic data and its application to the evolution of the crocodilian palate. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 210:345368.CrossRefGoogle Scholar
Laurin, M., and Reisz, R. R. 1996. A reevaluation of early amniote phylogeny. Zoological Journal of the Linnean Society, 113:165223.CrossRefGoogle Scholar
Lee, K., Feinstein, J., and Cracraft, J. 1997. The phylogeny of ratite birds: resolving conflicts between molecular and morphological data sets, p. 173211. In Mindell, D. P. (ed.), Avian Molecular Evolution and Systematics. Academic Press, San Diego.CrossRefGoogle Scholar
Lee, M. S. Y. 1995. Historical burden in systematics and the interrelationships of ‘parareptiles.’ Biological Reviews, 70:459547.Google Scholar
Lee, M. S. Y. 1997a. Reptile relationships turn turtle. Nature, 389:245246.CrossRefGoogle Scholar
Lee, M. S. Y. 1997b. Pareiasaur phylogeny and the origin of turtles. Zoological Journal of the Linnean Society, 120:197280.CrossRefGoogle Scholar
Livezey, B. C. 1997. A phylogenetic analysis of basal Anseriformes, the fossil Presbyornis, and the interordinal relationships of waterfowl. Zoological Journal of the Linnean Society, 121:361428.Google Scholar
Makovicky, P. J., 2001. A Montanoceratops cerorhynchus (Dinosauria: Ceratopsia) braincase from the Horseshoe Canyon Formation of Alberta, p. 243262. In Tanke, D. H. and Carpenter, K. (eds.), Mesozoic Vertebrate Life. Indiana University Press, Bloomington.Google Scholar
Makovicky, P. J., and Sues, H. D. 1998. Anatomy and phylogenetic relationships of the theropod dinosaur Microvenator celer from the Lower Cretaceous of Montana. American Museum Novitates, 3240:127.Google Scholar
Mannen, H., and Li, S. S.-L. 1999. Molecular evidence for a clade of turtles. Molecular Phylogenetics and Evolution, 13:144148.CrossRefGoogle ScholarPubMed
Marshall, C. R. 1999. Fossil gap analysis supports early Tertiary origin of trophically diverse avian orders: comment. Geology, 27:95.2.3.CO;2>CrossRefGoogle Scholar
Martin, L. D. 1995. The Enantiornithes: terrestrial birds of the Cretaceous. Courier Forschungsinstitut Senckenberg, 181:2336.Google Scholar
McGowan, C. 2001. The Dragon Seekers. Perseus Publishing, Cambridge, MA, 254 pp.Google Scholar
Merck, J. W. 1997. A phylogenetic analysis of the euryapsid reptiles. Unpublished Ph.D. dissertation, University of Texas at Austin, 785 pp.Google Scholar
Mindell, D. P., Sorenson, M. D., Dimcheff, D. E., Hasegawa, M., Ast, J. C., and Yuri, T. 1999. Interordinal relationships of birds and other reptiles based on whole mitochondrial genomes. Systematic Biology, 48:138152.CrossRefGoogle ScholarPubMed
Mindell, D. P., Sorenson, M. D., Huddleston, C. J., Miranda, H. C., Knight, A., Sawchuk, S. J., and Yuri, T. 1997. Phylogenetic relationships among and within select avian orders based on mitochondrial DNA, p. 214247. In Mindell, D. P. (ed.), Avian Molecular Evolution and Systematics. Academic Press, San Diego.Google Scholar
Norell, M. A. 1989. The higher level relationships of the extant Crocodylia. Journal of Herpetology, 23:325335.CrossRefGoogle Scholar
Norell, M. A., and Clark, J. M. 1990. A reanalysis of Bernissartia fagesii, with comments on its phylogenetic position and its bearing on the origin and diagnosis of the Eusuchia. Bulletin de l'Institut Royal des Sciences Naturelles de Belgique, 60:115128.Google Scholar
Norell, M. A., and Clarke, J. A. 2001. Fossil that fills a critical gap in avian evolution. Nature, 409:181184.CrossRefGoogle ScholarPubMed
Norell, M. A., Clark, J. M., and Makovicky, P. J. 2001. Phylogenetic relationships among coelurosaurian theropods, p. xxx. In Gauthier, J. A. (ed.), New Perspectives on the Origin and Early Evolution of Birds. Yale University Press, New Haven.Google Scholar
Noriega, J. I., and Tambussi, C. P. 1995. A Late Cretaceous Presbyornithidae (Aves: Anseriformes) from Vega Island, Antarctic Peninsula: paleobiogeographic implications. Ameghiniana, 32:5761.Google Scholar
Novas, F. E. 1992. Phylogenetic relationships of basal dinosaurs, the Herrerasauridae. Palaeontology, 35:5162.Google Scholar
Novas, F. E. 1994. New information on the systematics and the postcranial skeleton of Herrerasaurus ischigualastensis (Theropoda: Herrerasauridae) from the Ischigualasto Formation (Upper Triassic) of Argentina. Journal of Vertebrate Paleontology, 13:400423.CrossRefGoogle Scholar
Novas, F. E. 1996. Alvarezsauridae, Cretaceous basal birds from Patagonia and Mongolia. Memoirs of the Queensland Museum, 39:675702.Google Scholar
Novas, F. E., and Puerta, P. F. 1997. New evidence concerning avian origins from the Late Cretaceous of Patagonia. Nature, 387:390392.CrossRefGoogle Scholar
Olson, S. L. 1985. The fossil record of birds, p. 79238. In Farner, D. S., King, J. R., and Parkes, K. C. (eds.), Avian Biology. Volume 8. Academic Press, San Diego.CrossRefGoogle Scholar
Olson, S. J. 1992. Neogaeornis wetzeli Lembrecht, a Cretaceous loon from Chile. Journal of Vertebrate Paleontology, 12:122124.CrossRefGoogle Scholar
Olson, S. J., and Parris, D. C. 1987. The Cretaceous birds of New Jersey. Smithsonian Contributions to Paleobiology, 63:122.CrossRefGoogle Scholar
Padian, K. 1984. The origin of pterosaurs, p. 163168. In Reif, W.-E. and Westphal, F. (eds.), Third Symposium on Mesozoic Terrestrial Ecosystems. Attempto Verlag, Tübingen.Google Scholar
Padian, K. 1992. The dinosaur as a teaching vehicle. Journal of College Science Teaching, 21:179183.Google Scholar
Padian, K. 1998. When is a bird not a bird? Nature, 393:729730.Google Scholar
Padian, K. 2001. The false issues of bird origins: an historiographic perspective, p. xxx. In Gauthier, J. A. (ed.), New Perspectives on the Origin and Early Evolution of Birds. Yale University Press, New Haven.Google Scholar
Padian, K., and Chiappe, L. M. 1998. The origin and early evolution of birds. Biological Reviews, 73:142.CrossRefGoogle Scholar
Padian, K., Huchinson, J. R., and Holtz, T. R. 1999. Phylogenetic definitions and nomenclature of the major taxonomic categories of the carnivorous Dinosauria (Theropoda). Journal of Vertebrate Paleontology, 19:6980.CrossRefGoogle Scholar
Padian, K., and May, C. L. 1993. The earliest dinosaurs, p. 379381. In Lucas, S. G. and Morales, M. (eds.), The Nonmarine Triassic. New Mexico Museum of Natural History and Science Bulletin 3.Google Scholar
Parrish, J. M. 1986. Locomotor adaptations in the hindlimb and pelvis of the Thecodontia. Hunteria, 1:135.Google Scholar
Parrish, J. M. 1992. Phylogeny of the Erythrosuchidae (Reptilia: Archosauriformes). Journal of Vertebrate Paleontology, 12:93102.CrossRefGoogle Scholar
Parrish, J. M. 1993. Phylogeny of the Crocodylotarsi, with reference to archosaurian and crurotarsan monophyly. Journal of Vertebrate Paleontology, 13(3):287308Google Scholar
Perle, A., Chiappe, L. M., Barsbold, R., Clark, J. M., and Norell, M. A. 1994. Skeletal morphology of Mononykus olecranus (Theropoda: Avialae) from the Late Cretaceous of Mongolia. American Museum Novitates, 3105:129.Google Scholar
Peters, D. 2000. A reexamination of four prolacertiforms with implications for pterosaur phylogenesis. Rivista Italiana di Paleontologia e Stratigrafia, 106:293336.Google Scholar
Platz, J. E., and Conlon, J. M. 1997. … and turn back again. Nature, 389:246.CrossRefGoogle Scholar
Poe, S. 1997. Data set incongruence and the phylogeny of crocodilians. Systematic Biology, 45:393414.CrossRefGoogle Scholar
Prum, R. O., Unwin, D. M., and Benton, M. J. 2001. Longisquama fossil and feather morphology. Science, 291:18991900.CrossRefGoogle ScholarPubMed
de Quieroz, K., and Gauthier, J. 1990. Phylogeny as a central principle in taxonomy: phylogenetic definitions of taxon names. Systematic Zoology, 39:307322.CrossRefGoogle Scholar
de Quieroz, K., and Gauthier, J. 1992. Phylogenetic taxonomy. Annual Review of Ecology and Systematics, 23:449480.CrossRefGoogle Scholar
Quinn, T. W., and Mindell, D. P. 1996. Mitochondrial gene order adjacent to the control region in crocodile, turtle, and tuatara. Molecular Phylogenetics and Evolution 5:344351.Google Scholar
Reig, O. A. 1959. Primeros datos descriptavos sobre nuevos reptiles arcosaurios del Triásico de Ischigualasto. Revista de la Asociacion Geo1ógica Argentina, 13:257270.Google Scholar
Reisz, R. R., and Sues, H.-D. 2000. The “feathers” of Longisquama . Nature, 408:428.CrossRefGoogle ScholarPubMed
Renesto, S. 1994. Megalancosaurus, a possibly arboreal archosauromorph (Reptilia) from the Upper Triassic of northern Italy. Journal of Vertebrate Paleontology, 14:3852.CrossRefGoogle Scholar
Rieppel, O., and Reisz, R. R., 1999. The origin and early evolution of turtles. Annual Review of Ecology and Systematics, 30:122.CrossRefGoogle Scholar
Romer, A. S. 1972. The Chanares (Argentina) Triassic reptile fauna. XII. The postcranial skeleton of the thecodont Chanaresuchus . Breviora, 385:121.Google Scholar
Russell, D. A., and Dong, Z.-M. 1993. The affinities of a new theropod from the Alxa Desert, Inner Mongolia, People's Republic of China. Canadian Journal of Earth Sciences, 30:21072127.CrossRefGoogle Scholar
Salisbury, S. W., and Willis, P. M. A. 1996. A new crocodylian from the Early Eocene of southeastern Queensland and a preliminary investigation of the phylogenetic relationships of crocodyloids. Alcheringa, 20:179227.CrossRefGoogle Scholar
Sanz, J. L., Chiappe, L. M., and Buscalioni, A. D. 1995. The osteology of Concornis lacustris (Aves: Enantiornithes) from the Lower Cretaceous of Spain and a reexamination of its phylogenetic significance. American Museum Novitates, 3133:123.Google Scholar
Sereno, P. C. 1986. Phylogeny of the bird-hipped dinosaurs (Order Ornithischia). National Geographic Research, 2:234256.Google Scholar
Sereno, P. C. 1991a. Basal archosaurs: phylogenetic relationships and functional implications. Society of Vertebrate Paleontology Memoir 2:153.CrossRefGoogle Scholar
Sereno, P. C. 1991b. Lesothosaurus, “fabrosaurids,” and the early evolution of Ornithischia. Journal of Vertebrate Paleontology, 11:168197.CrossRefGoogle Scholar
Sereno, P. C. 1993. The pectoral girdle and forelimb of the basal theropod Herrerasaurus ischigualastensis . Journal of Vertebrate Paleontology, 13:425450.CrossRefGoogle Scholar
Sereno, P. C. 1999. The evolution of dinosaurs. Science, 284:21372147.CrossRefGoogle ScholarPubMed
Sereno, P. C. 2000. Dinosaurian biogeography: vicariance, dispersal, and regional extinction, p. 249257. In Tomida, Y., Rich, T. H., and Vickers-Rich, P. (eds.), Proceedings of the Second Gondwanan Dinosaur Symposium, Tokyo.Google Scholar
Sereno, P. C. 2001. Alvarezsaurids: Birds or ornithomimosaurs? p. xxx. In Gauthier, J. A. (ed.), New Perspectives on the Origin and Early Evolution of Birds. Yale University Press, New Haven.Google Scholar
Sereno, P. C., and Arcucci, A. B. 1990. The monophyly of crurotarsal archosaurs and the origin of bird and crocodile ankle joints. Neues Jahrbuch für Geologie und Palaontologie Abhandlungen, 180:2152.Google Scholar
Sereno, P. C., and Arcucci, A. B. 1994a. Dinosaur precursors from the Middle Triassic of Argentina: Lagerpeton chanarensis . Journal of Vertebrate Paleontology, 13:385399.CrossRefGoogle Scholar
Sereno, P. C., and Arcucci, A. B. 1994b. Dinosaur precursors from the Middle Triassic of Argentina: Marasuchus lilloensis gen. nov. Journal of Vertebrate Paleontology, 14:5373.CrossRefGoogle Scholar
Sereno, P. C., and Novas, F. 1993. The skull and neck of the basal theropod Herrerasaurus ischigualastensis . Journal of Vertebrate Paleontology, 13:451476.CrossRefGoogle Scholar
Sereno, P. C., and Wild, R. 1992. Procompsognathus: theropod, “thecodont,” or both? Journal of Vertebrate Paleontology, 12:435458.CrossRefGoogle Scholar
Sibley, C. G., and Ahlquist, J. 1990. Phylogeny and Classification of Birds. Yale University Press, New Haven.Google Scholar
Sidor, C. A., and Hopson, J. A. 1998. Ghost lineages and “mammalness:” assessing the temporal pattern of character acquisition in the Synapsida. Paleobiology, 24:254273.Google Scholar
Sill, W. D. 1967. Proterochampsa barrionuevoi and the early evolution of the Crocodilia. Bulletin of the Museum of Comparative Zoology, 135:415446.Google Scholar
Stidham, T. A. 1998a. A lower jaw from a Cretaceous parrot. Nature, 396:2930.CrossRefGoogle Scholar
Stidham, T. A. 1998b. Phylogenetic and ecological diversification of waterfowl (Anseriformes) in the Late Cretaceous and Paleogene. Journal of Vertebrate Paleontology, 18(3):80A.Google Scholar
Storrs, G. W., and Gower, D. 1993. The earliest possible choristodere (Diapsida) and gaps in the fossil record of semiaquatic reptiles. Journal of the Geological Society, 150:11031107.CrossRefGoogle Scholar
Stromer, E. 1925. Ergebnisse der Forschungsreisen Prof. E. Stromers in den Wüsten Ägyptens, II: Wirbeltier-Reste der Baharije-Stufe (Unterestes Cenoman), 7: Stomatosuchus inermis Stromer, ein schwach bezahnter Krokodilier. Abhandlungen der Bayerischen Akademie der Wissenshaften Mathematisch-naturwissenschaftliche Abteilung, 30:19.Google Scholar
Stromer, E. 1933. Ergebnisse der Forschungsreisen Prof. E. Stromers in den Wüsten Ägyptens. 12: Die Procölen Crocodilia. Abhandlungen der Bayerischen Akademie der Wissenshaften Mathematisch-naturwissenschaftliche Abteilung, N. F. 15:155.Google Scholar
Sues, H.-D. 1997. On Chirostenotes, a Late Cretaceous oviraptorosaur (Dinosauria: Theropoda) from western North America. Journal of Vertebrate Paleontology, 17:698716.CrossRefGoogle Scholar
Tarsitano, S. F., Frey, E., and Riess, J. 1989. The evolution of the Crocodilia: a conflict between morphological and biochemical data. American Zoologist, 29:843856.CrossRefGoogle Scholar
Tatarinov, L. P. 1960. [Discovery of pseudosuchians in the Upper Permian of the USSR.] Paleontologicheskii Zhurnal, 1960:7480. (In Russian)Google Scholar
Trueman, J. W. H. 1998. Reverse successive weighting. Systematic Biology, 47:733737.CrossRefGoogle ScholarPubMed
Unwin, D. M., and Bakhurina, N. N. 1994. Sordes pilosus and the nature of the pterosaur flight apparatus. Nature, 371:6264.CrossRefGoogle Scholar
Upchurch, P. 1995. Evolutionary history of sauropod dinosaurs. Philosophical Transactions of the Royal Society of London B, 349:365390.Google Scholar
van Tuinen, M., and Hedges, S. B. 2001. Calibration of avian molecular clocks. Molecular Biology and Evolution, 18:206213.CrossRefGoogle ScholarPubMed
van Tuinen, M., Sibley, C. G., and Hedges, S. B. 2000. The early history of modern birds inferred from DNA sequences of nuclear and mitochondrial ribosomal genes. Molecular Biology and Evolution, 17:451457.CrossRefGoogle ScholarPubMed
Varricchio, D. J., Jackson, F., and Trueman, C. N. 1999. A nesting trace with eggs for the Cretaceous theropod dinosaur Troodon formosus . Journal of Vertebrate Paleontology, 19:91100.CrossRefGoogle Scholar
Waddell, P. J., Cao, Y., Hasegawa, M., and Mindell, D. P. 1999. Assessing the Cretaceous superordinal divergence times within birds and placental mammals by using whole mitochondrial protein sequences and an extended statistical framework. Systematic Biology, 48:119137.CrossRefGoogle Scholar
Walker, A. D. 1964. Triassic reptiles from the Elgin area: Ornithosuchus and the origin of carnosaurs. Philosophical Transactions of the Royal Society of London, 248:53134.Google Scholar
Walker, A. D. 1990. A revision of Sphenosuchus acutus Haughton, a crocodylomorph reptile from the Elliot Formation (Late Triassic or Early Jurassic) of South Africa. Philosophical Transactions of the Royal Society of London B, 330:1120.Google Scholar
Walker, C. A. 1981. A new subclass of birds from the Cretaceous of South America. Nature, 292:5153.CrossRefGoogle Scholar
Weishampel, D. B., Dodson, P., and Osmólska, H. 1990. The Dinosauria. University of California Press, Berkeley, 733 pp.Google Scholar
Wellnhofer, P. 1991. The Illustrated Encyclopedia of Pterosaurs. Salamander Books, London, 192 pp.Google Scholar
Welman, J. 1998. The taxonomy of the South African proterosuchids (Reptilia, Archosauromorpha). Journal of Vertebrate Paleontology, 18:340347.CrossRefGoogle Scholar
White, P. S., and Densmore, L. D. In press. A comparison of DNA sequence data analysis methods and their effect on the recovery of crocodylian relationships. In Grigg, G., Seebacher, F., and Franklin, C. E. (eds.), Crocodilian Biology and Evolution. Surrey Beatty and Sons, Sydney.Google Scholar
Wilson, E. O. 1988. The current state of biological diversity, p. 318. In Wilson, E. O. and Peter, F. M. (eds.), Biodiversity. National Academy Press, Washington, DC.Google Scholar
Wilson, J. A., and Sereno, P. C. 1998. Early evolution and higher-level phylogeny of sauropod dinosaurs. Society of Vertebrate Paleontology Memoir, 5:168.CrossRefGoogle Scholar
Williamson, T. E. 1996. ?Brachychampsa sealeyi, sp. nov., (Crocodylia, Alligatoroidea) from the Upper Cretaceous (lower Campanian) Menefee Formation, northwestern New Mexico. Journal of Vertebrate Paleontology, 16:421431.CrossRefGoogle Scholar
Witmer, L. M. 1997. The evolution of the antorbital cavity of archosaurs: a study in soft-tissue reconstruction in the fossil record with an analysis of the function of pneumaticity. Society of Vertebrate Paleontology Memoir, 3:173.CrossRefGoogle Scholar
Wu, X.-C., and Chatterjee, S. 1993. Dibothrosuchus elaphros, a crocodylomorph from the Lower Jurassic of China and the phylogeny of the Sphenosuchia. Journal of Vertebrate Paleontology, 13:5889.CrossRefGoogle Scholar
Wu, X.-C., Brinkman, D. B., and Russell, A. P. 1996. A new alligator from the Upper Cretaceous of Canada and the relationships of early eusuchians. Palaeontology, 39:351375.Google Scholar
Xu, X., Tang, Z.-L., and Wang, X.-L. 1999. A therezinosauroid dinosaur with integumentary structures from China. Nature, 399:350354.CrossRefGoogle Scholar
Xu, X., Zhou, Z.-H., and Wang, X.-L. The smallest known non-avian theropod dinosaur. Nature, 408:705708.CrossRefGoogle Scholar
Xu, X., Zhou, Z.-H., and Prum, R. O. 2001. Branched integumental structures in Sinornithosaurus and the origin of feathers. Nature, 410:200204.CrossRefGoogle ScholarPubMed
Zardoya, R., and Meyer, A. 1998. Complete mitochondrial genome suggests diapsid affinities of turtles. Proceedings of the National Academy of Sciences of the USA, 95:1422614231.CrossRefGoogle ScholarPubMed
Zardoya, R., and Meyer, A. 2001. The evolutionary position of turtles revised. Naturwissenschaften, 88:193200.CrossRefGoogle ScholarPubMed
Zhang, F., and Zhou, Z. 2000. A primitive enantiornithine bird and the origin of feathers. Science, 290:19551959.CrossRefGoogle ScholarPubMed