Skip to main content
Log in

Propagation of flexural waves in phononic crystal thin plates with linear defects

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

The band structures of flexural waves in a phononic crystal thin plate with straight, bending or branching linear defects are theoretically investigated using the supercell technique based on the improved plane wave expansion method. We show the existence of an absolute band gap of the perfect phononic crystal and linear defect modes inside the gap caused by localization of flexural waves at or near the defects. The displacement distributions show that flexural waves can transmit well along the straight linear defect created by removing one row of cylinders from the perfect phononic crystals for almost all the frequencies falling in the band gap, which indicates that this structure can act as a high efficiency waveguide. However, for bending or branching linear defects, there exist both guided and localized modes, and therefore the phononic crystals could be served as waveguides or filters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Benchabane, S., Khelif, A., Choujaa, A., Djafari-Rouhani, B., Laude, V., 2005. Interaction of waveguide and localized modes in a phononic crystal. Europhysics Letters, 71(4): 570–575. [doi:10.1209/epl/i2005-10131-2]

    Article  Google Scholar 

  • Bria, D., Djafari-Rouhani, B., 2002. Omnidirectional elastic band gap in finite lamellar structures. Physical Review E, 66(5):056609. [doi:10.1103/PhysRevE.66.056609]

    Article  Google Scholar 

  • Cao, Y.J., Hou, Z.L., Liu, Y.Y., 2004. Convergence problem of plane-wave expansion method for phononic crystals. Physics Letters A, 327(2–3):247–253. [doi:10.1016/j.physleta.2004.05.030]

    Article  MATH  Google Scholar 

  • Charles, C., Bonello, B., Ganot, F., 2006. Propagation of guided elastic waves in 2D phononic crystals. Ultrasonics, 44(Suppl. 1):e1209–e1213. [doi:10.1016/j.ultras.2006.05.096]

    Article  Google Scholar 

  • Hsu, J.C., Wu, T.T., 2006. Efficient formulation for band-structure calculations of two-dimensional phononic-crystal plates. Physical Review B, 74(14):144303. [doi:10.1103/PhysRevB.74.144303]

    Article  Google Scholar 

  • Kafesaki, M., Sigalas, M.M., Garcia, N., 2001. Wave guides in two-dimensional elastic wave band-gap materials. Physica B: Condensed Matter, 296(1–3):190–194. [doi:10.1016/S0921-4526(00)00799-7]

    Article  Google Scholar 

  • Khelif, A., Choujaa, A., Djafari-Rouhani, B., Wilm, M., Ballandras, S., Laude, V., 2003a. Trapping and guiding of acoustic waves by defect modes in a full-band-gap ultrasonic crystal. Physical Review B, 68(21):214301. [doi:10.1103/PhysRevB.68.214301]

    Article  Google Scholar 

  • Khelif, A., Djafari-Rouhani, B., Vasseur, J.O., Deymier, P.A., 2003b. Transmission and dispersion relations of perfect and defect-containing waveguide structures in phononic band gap materials. Physical Review B, 68(2):024302. [doi:10.1103/PhysRevB.68.024302]

    Article  Google Scholar 

  • Khelif, A., Choujaa, A., Benchabane, S., Djafari-Rouhani, B., Laude, V., 2004. Guiding and bending of acoustic waves in highly confined phononic crystal waveguides. Applied Physics Letters, 84(22):4400–4402. [doi:10.1063/1.1757642]

    Article  Google Scholar 

  • Li, L.F., 1996. Use of Fourier series in the analysis of discontinuous periodic structures. Journal of the Optical Society America A, 13(9):1870–1876. [doi:10.1364/JOSAA.13.001870]

    Article  Google Scholar 

  • Li, X.C., Liu, Z.Y., 2005. Bending and branching of acoustic waves in two-dimensional phononic crystals with linear defects. Physics Letters A, 338(3–5):413–419. [doi:10.1016/j.physleta.2005.02.056]

    MATH  Google Scholar 

  • Pennec, Y., Djafari-Rouhani, B., Vasseur, J.O., Khelif, A., Deymier, P.A., 2004. Tunable filtering and demultiplexing in phononic crystals with hollow cylinders. Physical Review E, 69(4):046608. [doi:10.1103/PhysRevE.69.046608]

    Article  Google Scholar 

  • Pennec, Y., Djafari-Rouhani, B., Larabi, H., Vasseur, J.O., Hladky-Hennion, A.C., 2008. Low-frequency gaps in a phononic crystal constituted of cylindrical dots deposited on a thin homogeneous plate. Physical Review B, 78(10): 104105. [doi:10.1103/PhysRevB.78.104105]

    Article  Google Scholar 

  • Sigalas, M.M., 1998. Defect states of acoustic waves in a two-dimensional lattice of solid cylinders. Journal of Applied Physics, 84(6):3026–3030. [doi:10.1063/1.368456]

    Article  Google Scholar 

  • Sigalas, M.M., Economou, E.N., 1994. Elastic waves in plates with periodically placed inclusions. Journal of Applied Physics, 75(6):2845–2850. [doi:10.1063/1.356177]

    Article  Google Scholar 

  • Sun, J.H., Wu, T.T., 2005. Analyses of mode coupling in joined parallel phononic crystal waveguides. Physical Review B, 71(17):174303. [doi:10.1103/PhysRevB.71.174303]

    Article  Google Scholar 

  • Sun, J.H., Wu, T.T., 2007. Propagation of acoustic waves in phononic-crystal plates and waveguides using a finite-difference time-domain method. Physical Review B, 76(10):104304. [doi:10.1103/PhysRevB.76.104304]

    Article  Google Scholar 

  • Tanaka, Y., Tamura, S.I., 1998. Surface acoustic waves in two-dimensional periodic elastic structures. Physical Review B, 58(12):7958–7965. [doi:10.1103/PhysRevB.58.7958]

    Article  Google Scholar 

  • Vasseur, J.O., Hladky-Hennion, A.C., Djafari-Rouhani, B., Duval, F., Dubus, B., Pennec, Y., Deymier, P.A., 2007. Waveguiding in two-dimensional piezoelectric phononic crystal plates. Journal of Applied Physics, 101(11): 114904. [doi:10.1063/1.2740352]

    Article  Google Scholar 

  • Vasseur, J.O., Deymier, P.A., Djafari-Rouhani, B., Pennec, Y., Hladky-Hennion, A.C., 2008. Absolute forbidden bands and waveguiding in two-dimensional phononic crystal plates. Physical Review B, 77(8):085415. [doi:10.1103/PhysRevB.77.085415]

    Article  Google Scholar 

  • Wu, F.G., Liu, Z.Y., Liu, Y.Y., 2004. Splitting and tuning characteristics of the point defect modes in two-dimensional phononic crystals. Physical Review E, 69(6): 066609. [doi:10.1103/PhysRevE.69.066609]

    Article  Google Scholar 

  • Wu, T.T., Huang, Z.G., Lin, S., 2004. Surface and bulk acoustic waves in two-dimensional phononic crystal consisting of materials with general anisotropy. Physical Review B, 69(9):094301. [doi:10.1103/PhysRevB.69.094301]

    Article  Google Scholar 

  • Yan, Z.Z., Wang, Y.S., 2006. Wavelet-based method for calculating elastic band gaps of two-dimensional phononic crystals. Physical Review B, 74(22):224303. [doi:10.1103/PhysRevB.74.224303]

    Article  Google Scholar 

  • Yan, Z.Z., Wang, Y.S., Zhang, C.Z., 2008. Wavelet method for calculating the defect states of two-dimensional phononic crystals. Acta Mechanica Solida Sinica, 21(2): 104–109. [doi:10.1007/s10338-008-0813-6]

    Article  Google Scholar 

  • Yao, Y.W., Wu, F.G., Hou, Z.L., Liu, Y.Y., 2007. Propagation properties of elastic waves in semi-infinite phononic crystals and related waveguides. The European Physical Journal B, 58(4):353–360. [doi:10.1140/epjb/e2007-00244-x]

    Article  Google Scholar 

  • Yao, Z.J., Yu, G.L., Wang, Y.S., Shi, Z.F., 2009. Propagation of bending waves in phononic crystal thin plates with a point defect. International Journal of Solids and Structures, 46(13):2571–2576. [doi:10.1016/j.ijsolstr.2009.02.002]

    Article  MATH  Google Scholar 

  • Yu, D.L., Wang, G., Liu, Y.Z., Wen, J.H., Qiu, J., 2006. Flexural vibration band gaps in thin plates with two-dimensional binary locally resonant structures. Chinese Physics, 15(2):266–271. [doi:10.1088/1009-1963/15/2/004]

    Article  Google Scholar 

  • Zhang, X., Liu, Z., Liu, Y., Wu, F., 2004. Defect states in 2D acoustic band-gap materials with bend-shaped linear defects. Solid State Communications, 130(1–2):67–71. [doi:10.1016/j.ssc.2004.01.007]

    Article  Google Scholar 

  • Zhang, X., Wu, F., Yao, Y., Liu, Z., 2010. Transverse waveband gaps and longitudinal wave band gaps in solid phononic crystals. Solid State Communications, 150(5–6): 275–279. [doi:10.1016/j.ssc.2009.11.007]

    Article  Google Scholar 

  • Zhong, H.L., Wu, F.G., Zhang, X., Liu, Y.Y., 2005. Localized defect modes of water waves through two-dimensional periodic bottoms with point defects. Physics Letters A, 339(6):478–487. [doi:10.1016/j.physleta.2005.03.062]

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gui-lan Yu.

Additional information

Project (Nos. 10632020 and 90715006) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, Zj., Yu, Gl., Wang, Ys. et al. Propagation of flexural waves in phononic crystal thin plates with linear defects. J. Zhejiang Univ. Sci. A 11, 827–834 (2010). https://doi.org/10.1631/jzus.A1000123

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A1000123

Key words

CLC number

Navigation