Skip to main content
Log in

Phyllanthus emblica Linn. fruit extract potentiates the anticancer efficacy of mitomycin C and cisplatin and reduces their genotoxicity to normal cells in vitro

余甘子提取物增强丝裂霉素C和顺铂的抗癌作用并降低其对正常细胞的遗传毒性

  • Published:
Journal of Zhejiang University-SCIENCE B Aims and scope Submit manuscript

Abstract

Objective

Fruit of Phyllanthus emblica Linn. (PE) is widely consumed as a functional food and used as a folk medicine due to its remarkable nutritional and pharmacological effects. Mitomycin C (MMC) and cisplatin (cDDP) are the most widely used forms of chemotherapeutic drug, but their clinical use is limited by their genotoxicity to normal cells. We aimed to determine whether PE has potential to reduce the genotoxicity, while improving the anticancer effect, of MMC and cDDP.

Methods

Cell proliferation was evaluated using the trypan blue exclusion assay and colony-forming assay. Genomic instability (GIN) was measured using the cytokinesis-block micronucleus assay.

Results

Co-treatment (72 h) with PE at 20–320 μg/ml significantly enhanced the efficacy of MMC (0.05 μg/ml) and cDDP (1 μg/ml) against Colo205 colorectal cancer cells (P<0.05), and at 80–320 μg/ml significantly decreased MMCand cDDP-induced GIN and multinucleation in normal colonic NCM460 cells (P<0.05). PE significantly decreased the mitotic index (P<0.01), blocked mitotic progression (P<0.05), and promoted apoptosis (P<0.01) in MMC- and cDDP-treated NCM460 cells, suggesting that PE-mediated inhibition of mitosis and induction of apoptosis may limit the division and survival of highly damaged cells. Also, PE was found to inhibit the clonal expansion of MMC- and cDDP-treated NCM460 cells (P<0.05) and decrease the heterogeneity of the surviving clones.

Conclusions

PE potentiates the anticancer efficacy of MMC and cDDP, while preventing their genotoxicity and inhibiting clonal expansions of unstable genomes in normal cells. These data suggest that PE has the potential to reduce the risk of secondary cancers induced by chemotherapeutics.

中文概要

目的

评估余甘子提取物(PE)对丝裂霉素C(MMC)和顺铂(cDDP)抗癌活性及其遗传毒性副作用的影响。

创新点

首次发现PE能减弱MMC和cDDP对人正常结肠上皮细胞基因组的损伤以及降低基因组受损细胞的克隆形成能力和克隆异质性。

方法

人结肠癌Colo205细胞和人正常结肠上皮NCM460细胞分别经PE、PE+MMC组合或PE+cDDP组合处理72 h。细胞增殖用台盼蓝拒染法和克隆形成法测定,遗传毒性用胞质分裂阻断微核分析法(CBMN)测定。

结论

结果显示,PE可以显著增强MMC和cDDP的抗Colo205细胞增殖能力(图1)。同时,PE显著降低MMC和cDDP诱导的NCM460细胞基因组不稳定现象,包括降低微核、核质桥和核芽(表1和图2)以及多核化细胞(图3)。此外,PE显著降低经MMC和cDDP处理的NCM460细胞克隆性扩增能力,并降低克隆的异质性(图4)。综上所述,PE不仅能增强MMC和cDDP的抗癌能力,还可能具有减弱它们诱发正常细胞恶性转变的潜力。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aiyer, H.S., Vadhanam, M.V., Stoyanova, R., et al., 2008. Dietary berries and ellagic acid prevent oxidative DNA damage and modulate expression of DNA repair genes. Int. J. Mol. Sci., 9(3):327–341. http://dx.doi.org/10.3390/ijms9030327

    Article  PubMed  PubMed Central  Google Scholar 

  • Aronson, J.K., 2010. Meyler’s Side Effects of Drugs Used in Cancer & Immunology. Elsevier, Amsterdam.

    Google Scholar 

  • Attia, S.M., 2010. The impact of quercetin on cisplatin induced clastogenesis and apoptosis in murine marrow cells. Mutagenesis, 25(3):281–288. http://dx.doi.org/10.1093/mutage/geq004

    Article  CAS  PubMed  Google Scholar 

  • Banu, S.M., Selvendiran, K., Singh, J.P.V., et al., 2004. Protective effect of Emblica officinalis ethanolic extract against 7,12-dimethylbenz(a)anthracene (DMBA) induced genotoxicity in Swiss albino mice. Hum. Exp. Toxicol., 23(11):527–531. http://dx.doi.org/10.1191/0960327104ht484oa

    Article  PubMed  Google Scholar 

  • Brüsehafer, K., Rees, B.J., Manshian, B.B., et al., 2014. Chromosome breakage induced by the genotoxic agents mitomycin C and cytosine arabinoside is concentration and p53 dependent. Toxicol. Sci., 140(1):94–102. http://dx.doi.org/10.1093/toxsci/kfu058

    Article  PubMed  Google Scholar 

  • Cheung-Ong, K., Giaever, G., Nislow, C., 2013. DNAdamaging agents in cancer chemotherapy: serendipity and chemical biology. Chem. Biol., 20(5):648–659. http://dx.doi.org/10.1016/j.chembiol.2013.04.007

    Article  CAS  PubMed  Google Scholar 

  • De, A., De, A., Papasian, C., et al., 2013. Emblica officinalis extract induces autophagy and inhibits human ovarian cancer cell proliferation, angiogenesis, growth of mouse xenograft tumors. PLoS ONE, 8(8):e72748. http://dx.doi.org/10.1371/journal.pone.0072748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deans, A.J., West, S.C., 2011. DNA interstrand crosslink repair and cancer. Nat. Rev. Cancer, 11(7):467–480. http://dx.doi.org/10.1038/nrc3088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dertinger, S.D., Avlasevich, S.L., Torous, D.K., et al., 2014. Persistence of cisplatin-induced mutagenicity in hematopoietic stem cells: implications for secondary cancer risk following chemotherapy. Toxicol. Sci., 140(2):307–314. http://dx.doi.org/10.1093/toxsci/kfu078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eng, C., 2010. Are herbal medicines ripe for the cancer clinic? Sci. Transl. Med., 2(45):45ps41. http://dx.doi.org/10.1126/scitranslmed.3001517

    Google Scholar 

  • Fenech, M., 2006. Cytokinesis-block micronucleus assay evolves into a “cytome” assay of chromosomal instability, mitotic dysfunction and cell death. Mutat. Res. Fundam. Mol. Mech. Mutagen., 600(1):58–66. http://dx.doi.org/10.1016/j.mrfmmm.2006.05.028

    Article  CAS  Google Scholar 

  • Fenech, M., 2007. Cytokinesis-block micronucleus cytome assay. Nat. Protoc., 2(5):1084–1104. http://dx.doi.org/10.1038/nprot.2007.77

    Article  CAS  PubMed  Google Scholar 

  • Fenech, M., Chang, W.P., Kirsch-Volders, M., et al., 2003. HUMN project: detailed description of the scoring criteria for the cytokinesis-block micronucleus assay using isolated human lymphocyte cultures. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 534(1-2):65–75. http://dx.doi.org/10.1016/S1383-5718(02)00249-8

    Article  CAS  Google Scholar 

  • Fenech, M., Kirsch-Volders, M., Natarajan, A., et al., 2011. Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells. Mutagenesis, 26(1):125–132. http://dx.doi.org/10.1093/mutage/geq052

    Article  CAS  PubMed  Google Scholar 

  • Giri, A., Khynriam, D., Prasad, S.B., 1998. Vitamin C mediated protection on cisplatin induced mutagenicity in mice. Mutat. Res., 421(2):139–148. http://dx.doi.org/10.1016/S0027-5107(98)00158-4

    Article  CAS  PubMed  Google Scholar 

  • Glen, C.D., Dubrova, Y.E., 2012. Exposure to anticancer drugs can result in transgenerational genomic instability in mice. Proc. Natl. Acad. Sci. USA, 109(8):2984–2988. http://dx.doi.org/10.1073/pnas.1119396109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greaves, M., Maley, C.C., 2012. Clonal evolution in cancer. Nature, 481(7381):306–313. http://dx.doi.org/10.1038/nature10762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo, X., Wang, X., 2016. Phyllanthus emblica fruit extract activates spindle assembly checkpoint, prevents mitotic aberrations and genomic instability in human colon epithelial NCM460 cells. Int. J. Mol. Sci., 17(9):1437. http://dx.doi.org/10.3390/ijms17091437

    Article  PubMed Central  Google Scholar 

  • Guo, X., Ni, J., Liu, X., et al., 2013. Phyllanthus emblica L. fruit extract induces chromosomal instability and suppresses necrosis in human colon cancer cells. Int. J. Vitam. Nutr. Res., 83(5):271–280. http://dx.doi.org/10.1024/0300-9831/a000169

    Article  CAS  PubMed  Google Scholar 

  • Guo, X., Ni, J., Xue, J., et al., 2017. Extract of bulbus Fritillaria cirrhosa perturbs spindle assembly checkpoint, induces mitotic aberrations and genomic instability in human colon epithelial cell line. Exp. Toxicol. Pathol., 69(3):163–171. http://dx.doi.org/10.1016/j.etp.2016.12.009

    Article  PubMed  Google Scholar 

  • Heng, H.H., Bremer, S.W., Stevens, J.B., et al., 2013. Chromosomal instability (CIN): what it is and why it is crucial to cancer evolution. Cancer Metast. Rev., 32(3-4): 325–340. http://dx.doi.org/10.1007/s10555-013-9427-7

    Article  Google Scholar 

  • Iamsaard, S., Arun, S., Burawat, J., et al., 2014. Phenolic contents and antioxidant capacities of Thai-Makham Pom (Phyllanthus emblica L.) aqueous extracts. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 15(4):405–408. http://dx.doi.org/10.1631/jzus.B1300284

    Article  Google Scholar 

  • Janssen, A., Kops, G.J., Medema, R.H., 2009. Elevating the frequency of chromosome mis-segregation as a strategy to kill tumor cells. Proc. Natl. Acad. Sci. USA, 106(45):19108–19113. http://dx.doi.org/10.1073/pnas.0904343106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kempf, S.R., Ivankovic, S., 1986. Carcinogenic effect of cisplatin (cis-diammine-dichloroplatinum (II), CDDP) in BD IX rats. J. Cancer Res. Clin. Oncol., 111(2):133–136. http://dx.doi.org/10.1007/BF00400751

    Article  CAS  PubMed  Google Scholar 

  • Lam, W., Bussom, S., Guan, F., et al., 2010. The four-herb Chinese medicine PHY906 reduces chemotherapyinduced gastrointestinal toxicity. Sci. Transl. Med., 2(45): 45ra59. http://dx.doi.org/10.1126/scitranslmed.3001270

    Article  PubMed  Google Scholar 

  • Lengauer, C., Kinzler, K.W., Vogelstein, B., 1997. Genetic instability in colorectal cancers. Nature, 386(6625):623–627. http://dx.doi.org/10.1038/386623a0

    Article  CAS  PubMed  Google Scholar 

  • Li, F.Y., Lai, M.D., 2009. Colorectal cancer, one entity or three. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 10(3):219–229. http://dx.doi.org/10.1631/jzus.B0820273

    Article  Google Scholar 

  • Li, X., Yang, G., Li, X., et al., 2013. Traditional Chinese medicine in cancer care: a review of controlled clinical studies published in Chinese. PLoS ONE, 8(4):e60338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo, W., Zhao, M., Yang, B., et al., 2011. Antioxidant and antiproliferative capacities of phenolics purified from Phyllanthus emblica L. fruit. Food Chem., 125(2):277–282. http://dx.doi.org/10.1016/j.foodchem.2010.09.027

    Article  Google Scholar 

  • Maley, C.C., Galipeau, P.C., Li, X., et al., 2004. The combination of genetic instability and clonal expansion predicts progression to esophageal adenocarcinoma. Cancer Res., 64(20):7629–7633. http://dx.doi.org/10.1158/0008-5472.CAN-04-1738

    Article  CAS  PubMed  Google Scholar 

  • Mathai, R.T., Tonse, R., Kalekhan, F., et al., 2015. Amla in the prevention of aging: scientific validation of the ethnomedicinal claims. In: Watson, R.R. (Ed.), Foods and Dietary Supplements in the Prevention and Treatment of Disease in Older Adults. Academic Press, Waltham, p.29–35.

    Chapter  Google Scholar 

  • Mazumdar, M., Giri, S., Giri, A., 2011. Role of quercetin on mitomycin C induced genotoxicity: analysis of micronucleus and chromosome aberrations in vivo. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 721(2):147–152. http://dx.doi.org/10.1016/j.mrgentox.2011.01.007

    Article  CAS  Google Scholar 

  • Meadows, A.T., Friedman, D.L., Neglia, J.P., et al., 2009. Second neoplasms in survivors of childhood cancer: findings from the childhood cancer survivor study cohort. J. Clin. Oncol., 27(14):2356–2362. http://dx.doi.org/10.1200/JCO.2008.21.1920

    Article  PubMed  PubMed Central  Google Scholar 

  • Min, K., Ebeler, S.E., 2009. Quercetin inhibits hydrogen peroxide-induced DNA damage and enhances DNA repair in Caco-2 cells. Food Chem. Toxicol., 47(11):2716–2722. http://dx.doi.org/10.1016/j.fct.2009.07.033

    Article  CAS  PubMed  Google Scholar 

  • Mirunalini, S., Krishnaveni, M., 2010. Therapeutic potential of Phyllanthus emblica (AMLA): the ayurvedic wonder. J. Basic Clin. Physiol. Pharmacol., 21(1):93–105. http://dx.doi.org/10.1515/JBCPP.2010.21.1.93

    Article  PubMed  Google Scholar 

  • Moyer, M.P., Manzano, L.A., Merriman, R.L., et al., 1996. NCM460, a normal human colon mucosal epithelial cell line. In Vitro Cell. Dev. Biol. Anim., 32(6):315–317. http://dx.doi.org/10.1007/BF02722955

    Article  CAS  PubMed  Google Scholar 

  • Pan, S.S., Andrews, P.A., Glover, C.J., et al., 1984. Reductive activation of mitomycin C and mitomycin C metabolites catalyzed by NADPH-cytochrome P-450 reductase and xanthine oxidase. J. Biol. Chem., 259(2):959–966.

    CAS  PubMed  Google Scholar 

  • Pinmai, K., Chunlaratthanabhorn, S., Ngamkitidechakul, C., et al., 2008. Synergistic growth inhibitory effects of Phyllanthus emblica and Terminalia bellerica extracts with conventional cytotoxic agents: doxorubicin and cisplatin against human hepatocellular carcinoma and lung cancer cells. World J. Gastroenterol., 14(10):1491–1497. http://dx.doi.org/10.3748/wjg.14.1491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruan, W.J., Lai, M.D., Zhou, J.G., 2006. Anticancer effects of Chinese herbal medicine, science or myth? J. Zhejiang Univ.-Sci. B, 7(12):1006–1014. http://dx.doi.org/10.1631/jzus.2006.B1006

    Article  CAS  Google Scholar 

  • Sharma, N., Trikha, P., Athar, M., et al., 2000. Inhibitory effect of Emblica officinals on the in vivo clastogenicity of benzo alpyrene and acyclophosphamide in mice. Hum. Exp. Toxicol., 19(6):377–384. http://dx.doi.org/10.1191/096032700678815945

    Article  CAS  PubMed  Google Scholar 

  • Storchova, Z., Kuffer, C., 2008. The consequences of tetraploidy and aneuploidy. J. Cell Sci., 121(23):3859–3866. http://dx.doi.org/10.1242/jcs.039537

    Article  CAS  PubMed  Google Scholar 

  • Torre, L.A., Bray, F., Siegel, R.L., et al., 2015. Global cancer statistics, 2012. CA Cancer J. Clin., 65(2):87–108. http://dx.doi.org/10.3322/caac.21262

    Article  PubMed  Google Scholar 

  • Travis, L.B., Holowaty, E.J., Bergfeldt, K., et al., 1999. Risk of leukemia after platinum-based chemotherapy for ovarian cancer. New. Eng. J. Med., 340(5):351–357. http://dx.doi.org/10.1056/NEJM199902043400504

    Article  CAS  PubMed  Google Scholar 

  • van den Belt-Dusebout, A.W., Wit, R.D., Gietema, J.A., et al., 2007. Treatment-specific risks of second malignancies and cardiovascular disease in 5-year survivors of testicular cancer. J. Clin. Oncol., 25(28):4370–4378. http://dx.doi.org/10.1200/JCO.2006.10.5296

    Article  PubMed  Google Scholar 

  • Waters, M.D., Brady, A.L., Stack, H.F., et al., 1990. Antimutagenicity profiles for some model compounds. Mutat. Res. Rev. Genet. Toxicol., 238(1):57–85. http://dx.doi.org/10.1016/0165-1110(90)90039-E

    Article  CAS  Google Scholar 

  • Zaki, B.I., Suriawinata, A.A., Eastman, A.R., et al., 2014. Chromosomal instability portends superior response of rectal adenocarcinoma to chemoradiation therapy. Cancer, 120(11):1733–1742. http://dx.doi.org/10.1002/cncr.28656

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was also supported by Yunnan Province New Academic Talent Award for Ph.D. 2016 (to Xi-han GUO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Wang.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 31260268 and 31560307)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Xh., Ni, J., Xue, Jl. et al. Phyllanthus emblica Linn. fruit extract potentiates the anticancer efficacy of mitomycin C and cisplatin and reduces their genotoxicity to normal cells in vitro. J. Zhejiang Univ. Sci. B 18, 1031–1045 (2017). https://doi.org/10.1631/jzus.B1600542

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1600542

Keywords

CLC number

关键词

Navigation