Skip to main content
Log in

Cloning and functional analysis of a novel ascorbate peroxidase (APX) gene from Anthurium andraeanum

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

An 888-bp full-length ascorbate peroxidase (APX) complementary DNA (cDNA) gene was cloned from Anthurium andraeanum, and designated as AnAPX. It contains a 110-bp 5′-noncoding region, a 28-bp 3′-noncoding region, and a 750-bp open reading frame (ORF). This protein is hydrophilic with an aliphatic index of 81.64 and its structure consisting of α-helixes, β-turns, and random coils. The AnAPX protein showed 93%, 87%, 87%, 87%, and 86% similarities to the APX homologs from Zantedeschia aethiopica, Vitis pseudoreticulata, Gossypium hirsutum, Elaeis guineensis, and Zea mays, respectively. AnAPX gene transcript was measured non-significantly in roots, stems, leaves, spathes, and spadices by real-time polymerase chain reaction (RT-PCR) analysis. Interestingly, this gene expression was remarkably up-regulated in response to a cold stress under 6 °C, implying that AnAPX might play an important role in A. andraeanum tolerance to cold stress. To confirm this function we overexpressed AnAPX in tobacco plants by transformation with an AnAPX expression construct driven by CaMV 35S promoter. The transformed tobacco seedlings under 4 °C showed less electrolyte leakage (EL) and malondialdehyde (MDA) content than the control. The content of MDA was correlated with chilling tolerance in these transgenic plants. These results show that AnAPX can prevent the chilling challenged plant from cell membrane damage and ultimately enhance the plant cold tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Airaki, M., Leterrier, M., Mateos, R.M., Valderrama, R., Chaki, M., Barroso, J.B., Rio, L.A.D., Palma, J.M., Corpas, F.J., 2012. Metabolism of reactive oxygen species and reactive nitrogen species in pepper (Capsicum annuum L.) plants under low temperature stress. Plant Cell Environ., 35(2):281–295. [doi:10.1111/j.1365-3040.2011.02310.x]

    Article  PubMed  CAS  Google Scholar 

  • Asada, K., 1992. Ascorbate peroxidase—a hydrogen peroxide-scavenging enzyme in plants. Physiol. Plant., 85(2): 235–241. [doi:10.1111/j.1399-3054.1992.tb04728.x]

    Article  CAS  Google Scholar 

  • Badawi, G.H., Kawano, N., Yamauchi, Y., Shimada, E., Sasaki, R., Kubo, A., Tanaka, K., 2004. Over-expression of ascorbate peroxidase in tobacco chloroplasts enhances the tolerance to salt stress and water deficit. Physiol. Plant., 121(2):231–238. [doi:10.1111/j.0031-9317.2004.00308.x]

    Article  PubMed  CAS  Google Scholar 

  • Baek, K.H., Skinner, D.Z., 2003. Alteration of antioxidant enzyme gene expression during cold acclimation of near-isogenic wheat lines. Plant Sci., 165(6):1221–1227. [doi:10.1016/S0168-9452(03)00329-7]

    Article  CAS  Google Scholar 

  • Bhatnagar-Mathur, P., Vadez, V., Sharma, K.K., 2008. Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects. Plant Cell Rep., 27(3): 411–424. [doi:10.1007/s00299-007-0474-9]

    Article  PubMed  CAS  Google Scholar 

  • Chen, G.Q., Meng, P., Liu, L.L., Chen, G., Wang, P., 2011. In silico cloning and characterization of Sorghum APX gene. China J. Bioinf., 9(2):125–130 (in Chinese). [doi:10.3969/j.issn.1672-5565.2011.02.007]

    Google Scholar 

  • Chen, J.M., Yu, X.P., Cheng, J.A., 2006. The application of chlorophyll fluorescence kinetics in the study of physiological responses of plants to environmental stresses. Acta Agric. Zhejiangensis, 18(1):51–55 (in Chinese). [doi:10. 3969/j.issn.1004-1524.2006.01.012]

    CAS  Google Scholar 

  • Chen, L., Xin, H.B., Sun, X.R., Yin, H., Li, X.X., Yi, M.F., 2010. Molecular cloning APX from Lilium longiforum and overexpressing to Arabidopsis thaliana enhanced salt tolerance. Acta Hortic. Sin., 37(12):1983–1990 (in Chinese).

    CAS  Google Scholar 

  • Cheng, H., He, Q.W., Huo, Y.M., Hou, L.X., Lv, J.F., 2009. Molecular cloning, characterization and expression analysis of CmAPX. Mol. Biol. Rep., 36(6):1531–1537. [doi:10.1007/s11033-008-9345-x]

    Article  PubMed  CAS  Google Scholar 

  • Dalton, D.A., Hanus, F.J., Russell, S.A., Evans, H.J., 1987. Purification, properties and distribution of ascorbate peroxidase in legume root nodules. Plant Physiol., 83(4): 789–794. [doi:10.1104/pp.83.4.789]

    Article  PubMed  CAS  Google Scholar 

  • Dong, C., Zheng, X.F., Li, G.L., Pan, C., Zhou, M.Q., Hu, Z.L., 2011. Cloning and expression of one chloroplastic ascorbate peroxidase gene from Nelumbo nucifera. Biochem. Genet., 49(9–10):656–664. [doi:10.1007/s10528-011-9440-x]

    Article  PubMed  CAS  Google Scholar 

  • Eltelib, H.A., Badejo, A.A., Fujikawa, Y., Esaka, M., 2011. Gene expression of monodehydroascorbate reductase and dehydroascorbate reductase during fruit ripening and in response to environmental stresses in acerola (Malpighia glabra). J. Plant Physiol., 168(6):619–627. [doi:10.1016/j.jplph.2010.09.003]

    Article  PubMed  CAS  Google Scholar 

  • Fortunato, A.S., Lidon, F.C., Batista-Santos, P., Leitão, A.E., Pais, I.P., Ribeiro, A.I., Ramalho, J.C., 2010. Biochemical and molecular characterization of the antioxidative system of Coffea sp. under cold conditions in genotypes with contrasting tolerance. J. Plant Physiol., 167(5): 333–342. [doi:10.1016/j.jplph.2009.10.013]

    Article  PubMed  CAS  Google Scholar 

  • Hara, M., Terashima, S., Fukaya, T., Kuboi, T., 2003. Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. Planta, 217(2):290–298. [doi:10.1007/s00425-003-0986-7]

    PubMed  CAS  Google Scholar 

  • Hernández, J.A., Olmos, E., Corpas, F.J., Sevilla, F., Río, L.A., 1995. Salt-induced oxidative stress in chloroplasts of pea plants. Plant Sci., 105(2):151–167. [doi:10.1016/0168-9452(94)04047-8]

    Article  Google Scholar 

  • Horsch, R.B., Fry, J.E., Hoffmann, N.L., Eichholtz, D., Rogers, S.G., Fraley, R.T., 1985. A simple and general method for transferring genes into plants. Science, 227(4691): 1229–1231. [doi:10.1126/science.227.4691.1229]

    Article  CAS  Google Scholar 

  • Kawakami, S., Matsumoto, Y., Matsunaga, A., Mayama, S., Mizuno, M., 2002. Molecular cloning of ascorbate peroxidase in potato tubers and its response during storage at low temperature. Plant Sci., 163(4):829–836. [doi:10.1016/S0168-9452(02)00232-7]

    Article  CAS  Google Scholar 

  • Kim, I.J., Chung, W.I., 1998. Molecular characterization of a cytosolic ascorbate peroxidase in strawberry fruit. Plant Sci., 133(1):69–77. [doi:10.1016/S0168-9452(98)00029-6]

    Article  CAS  Google Scholar 

  • Kong, X.S., Yi, X.F., 2008. Experimental Technology of Plant Physiology. Chinese Agricultural Press, Beijing, China, p.264–265 (in Chinese).

    Google Scholar 

  • Kornyeyev, D., Logan, B.A., Payton, P., Allen, R.D., Holaday, A.S., 2001. Enhanced photochemical light utilization and decreased chilling-induced photoinhibition of photosystem II in cotton overexpression genes encoding chloroplast-targeted antioxidant enzymes. Physiol. Plant., 113(3):323–331. [doi:10.1034/j.1399-3054.2001.1130304.x]

    Article  PubMed  CAS  Google Scholar 

  • Koussevitzky, S., Suzuki, N., Huntington, S., Armijo, L., Sha, W., Cortes, D., Shulaev, V., Mittler, R., 2008. Ascorbate peroxidase 1 plays a key role in the response of Arabidopsis thaliana to stress combination. J. Biol. Chem., 283(49):34197–34203. [doi:10.1074/jbc.M806337200]

    Article  PubMed  CAS  Google Scholar 

  • Kubo, A., Saji, H., Tanaka, K., Tanaka, K., Kondo, N., 1992. Cloning and sequencing of a cDNA encoding ascorbate peroxidase from Arabidopsis thaliana. Plant Mol. Biol., 18(4):691–701.

    Article  PubMed  CAS  Google Scholar 

  • Kuk, Y.I., Shin, J.S., Burgos, N.R., Hwang, T.E., Han, O., Cho, B.H., Jung, S., Guh, J.O., 2003. Antioxidative enzymes offer protection from chilling damage in rice plants. Crop Sci., 43(6):2109–2117. [doi:10.2135/cropsci2003.2109]

    Article  CAS  Google Scholar 

  • Lim, S., Kim, Y.H., Kim, S.H., Kwon, S.Y., Lee, H.S., Kim, J.S., Cho, K.Y., Paek, K.Y., Kwak, S.S., 2007. Ehanced tolerance of transgenic sweetpotato plants that express both CuZnSOD and APX in chloroplasts to methyl viologen-mediated oxidative stress and chilling. Mol. Breed., 19(3):227–239. [doi:10.1007/s11032-006-9051-0]

    Article  CAS  Google Scholar 

  • Lin, L., Wang, X.P., Wang, Y.J., 2006. cDNA clone, fusion expression and purification of the novel gene related to ascorbate peroxidase from Chinese wild Vitis pseudoreticulata in E. coli. Mol. Biol. Rep., 33(3):197–206. [doi:10.1007/s11033-006-0008-5]

    Article  PubMed  CAS  Google Scholar 

  • Lu, Z.Q., Takano, T., Liu, S.K., 2005. Purification and characterization of two ascorbate peroxidases of rice (Oryza sativa L.) expressed in Escherichia coli. Biotechnol. Lett., 27(1):63–67. [doi:10.1007/s10529-004-6587-0]

    Article  PubMed  CAS  Google Scholar 

  • Maruta, T., Inoue, T., Noshi, M., Tamoi, M., Yabuta, Y., Yoshimura, K., Ishikawa, T., Shigeoka, S., 2012. Cytosolic ascorbate peroxidase 1 protects organelles against oxidative stress by wounding- and jasmonate-induced H2O2 in Arabidopsis plants. Biochim. Biophys. Acta, 1820(12):1901–1907. [doi:10.1016/j.bbagen.2012.08.003]

    Article  PubMed  CAS  Google Scholar 

  • Mittler, R., Zilinskas, B.A., 1991. Molecular cloning and nucleotide sequence analysis of a cDNA encoding pea cytosolic ascorbate peroxidase. FEBS Lett., 289(2): 257–259. [doi:10.1016/0014-5793(91)81083-K]

    Article  PubMed  CAS  Google Scholar 

  • Mittova, V., Theodoulou, F.L., Kiddle, G., Volokita, M., Tal, M., Foyer, C.H., Guy, M., 2004. Comparison of mitochondria ascorbate peroxidase in the cultivated tomato, Lycopersicon esculentum, and its wild, salt-tolerant relative, L. pennellii—a role for matrix isoforms in protection against oxidative damage. Plant Cell Environ., 27(2): 237–250. [doi:10.1046/j.1365-3040.2004.01150.x]

    Article  CAS  Google Scholar 

  • Murgia, I., Tarantino, D., Vannini, C., Bracale, M., Carravieri, S., Soave, C., 2004. Arabidopsis thaliana plants overexpressing thylakoidal ascorbate peroxidase show increased resistance to Paraquat-induced photooxidative stress and to nitric oxide-induced cell death. Plant J., 38(6):940–953. [doi:10.1111/j.1365-313X.2004.02092.x]

    Article  PubMed  CAS  Google Scholar 

  • Oidaira, H., Sano, S., Koshiba, T., Ushimaru, T., 2000. Enhancement of antioxidative enzyme activities in chilled rice seedlings. J. Plant Physiol., 156(5–6):811–813. [doi:10.1016/S0176-1617(00)80254-0]

    Article  CAS  Google Scholar 

  • Orvar, B.L., Ellis, B.E., 1995. Isolation of a cDNA encoding cytosolic ascorbate peroxidase in tobacco. Plant Physiol., 108(2):839–840.

    Article  PubMed  CAS  Google Scholar 

  • Park, S.Y., Ryu, S.H., Jang, I.C., Kwon, S.Y., Kim, J.G., Kwak, S.S., 2004. Molecular cloning of a cytosolic ascorbate peroxidase cDNA from cell cultures of sweetpotato and its expression in response to stress. Mol. Genet. Genomics, 271(3):339–346. [doi:10.1007/s00438-004-0986-8]

    Article  PubMed  CAS  Google Scholar 

  • Santos, M., Gousseau, H., Lister, C., Foyer, C., Creissen, G., Mullineaux, P., 1996. Cytosolic ascorbate peroxidase from Arabidopsis thaliana L. is encoded by a small multigene family. Planta, 198(1):64–69. [doi:10.1007/BF00197587]

    Article  PubMed  CAS  Google Scholar 

  • Sarowar, S., Kim, E.N., Kim, Y.J., Ok, S.H., Kim, K.D., Hwang, B.K., Shin, J.S., 2005. Overexpression of a pepper ascorbate peroxidase-like 1 gene in tobacco plants enhances tolerance to oxidative stress and pathogens. Plant Sci., 169(1):55–63. [doi:10.1016/j.plantsci.2005.02.025]

    Article  CAS  Google Scholar 

  • Shen, W.B., Huang, L.Q., Xu, L.L., 1997. Ascorbate peroxidase in plants. Chem. Life, 17(5):24–26 (in Chinese).

    CAS  Google Scholar 

  • Shi, W.M., Muramoto, Y., Ueda, A., Takabe, T., 2001. Cloning of peroxisomal ascorbate peroxidase gene from barley and enhanced thermotolerance by overexpressing in Arabidopsis thaliana. Gene, 273(1):23–27. [doi:10.1016/S0378-1119(01)00566-2]

    Article  PubMed  CAS  Google Scholar 

  • Shigeoka, S., Ishikawa, T., Tamoi, M., Miyagawa, Y., Takeda, T., Yabuta, Y., Yoshimura, K., 2002. Regulation and function of ascorbate peroxidase isoenzymes. J. Exp. Bot., 53(372):1305–1319. [doi:10.1093/jexbot/53.372.1305]

    Article  PubMed  CAS  Google Scholar 

  • Sreenivasulu, N., Sopory, S.K., Kavi, Kishor, P.B., 2007. Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches. Gene, 388(1–2):1–13. [doi:10.1016/j.gene.2006.10.009]

    Article  PubMed  CAS  Google Scholar 

  • Sun, W.H., Duan, M., Li, F., Shu, D.F., Yang, S., Meng, Q.W., 2010. Overexpression of tomato tAPX gene in tobacco improves tolerance to high or low temperature stress. Biol. Plant., 54(4):614–620. [doi:10.1007/s10535-010-0111-2]

    Article  CAS  Google Scholar 

  • van Breusegem, F., Villarroel, R., van Montagu, M., Inzé, D., 1995. Ascorbate peroxidase cDNA from maize. Plant Physiol., 107(2):649–650.

    Article  PubMed  Google Scholar 

  • Wang, C., Yang, C.P., Wang, Y.C., 2009. Cloning and expression analysis of an APX gene from Betula platyphylla. J. Northeast Forestry Univ., 37(3):79–81, 88 (in Chinese).

    CAS  Google Scholar 

  • Wang, Y.J., Wisniewski, M., Meilan, R., Cui, M., Webb, R., Fuchigami, L., 2005. Overexpression of cytosolic ascorbate peroxidase in tomato confers tolerance to chilling and salt stress. J. Am. Soc. Hortic. Sci., 130(2):167–173.

    CAS  Google Scholar 

  • Webb, R.P., Allen, R.D., 1995. Isolation and characterization of a cDNA for spinach cytosolic ascorbate peroxidase. Plant Physiol., 108(3):1325.

    Article  PubMed  CAS  Google Scholar 

  • Xu, W.F., Shi, W.M., Ueda, A., Takabe, T., 2008. Mechanisms of salt tolerance in transgenic Arabidopsis thaliana carrying a peroxisomal ascorbate peroxidase gene from barley. Pedosphere, 18(4):486–495. [doi:10.1016/S1002-0160(08)60039-9]

    Article  CAS  Google Scholar 

  • Yoshimura, K., Yabuta, Y., Tamoi, M., Ishikawa, T., Shigeoka, S., 1999. Alternatively spliced mRNA variants of chloroplast ascorbate peroxidase isoenzymes in spinach leaves. Biochem. J., 338:41–48.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhu-jun Zhu.

Additional information

Project supported by the Science and Technology Key Project of Zhejiang Province (No. 2009C12095) and the National Natural Science Foundation of China (No. 31200527)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Hc., Tian, Dq., Liu, Jx. et al. Cloning and functional analysis of a novel ascorbate peroxidase (APX) gene from Anthurium andraeanum . J. Zhejiang Univ. Sci. B 14, 1110–1120 (2013). https://doi.org/10.1631/jzus.B1300105

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1300105

Key words

CLC number

Navigation