Skip to main content
Log in

Reducing the oxidative stress mediates the cardioprotection of bicyclol against ischemia-reperfusion injury in rats

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

Objective

To investigate the beneficial effect of bicyclol on rat hearts subjected to ischemia-reperfusion (IR) injuries and its possible mechanism.

Methods

Male Sprague-Dawley rats were intragastrically administered with bicyclol (25, 50 or 100 mg/(kg·d)) for 3 d. Myocardial IR was produced by occlusion of the coronary artery for 1 h and reperfusion for 3 h. Left ventricular hemodynamics was continuously monitored. At the end of reperfusion, myocardial infarct was measured by 2,3,5-triphenyltetrazolium chloride (TTC) staining, and serum lactate dehydrogenase (LDH) level and myocardial superoxide dismutase (SOD) activity were determined by spectrophotometry. Isolated ventricular myocytes from adult rats were exposed to 60 min anoxia and 30 min reoxygenation to simulate IR injuries. After reperfusion, cell viability was determined with trypan blue; reactive oxygen species (ROS) and mitochondrial membrane potential of the cardiomyocytes were measured with the fluorescent probe. The mitochondrial permeability transition pore (mPTP) opening induced by Ca2+ (200 μmol/L) was measured with the absorbance at 520 nm in the isolated myocardial mitochondria.

Results

Low dose of bicyclol (25 mg/(kg·d)) had no significant improving effect on all cardiac parameters, whereas pretreatment with high bicyclol markedly reduced the myocardial infarct and improved the left ventricular contractility in the myocardium exposed to IR (P<0.05). Medium dose of bicyclol (50 mg/(kg·d)) markedly improved the myocardial contractility, left ventricular myocyte viability, and SOD activity, as well decreased infarct size, serum LDH level, ROS production, and mitochondrial membrane potential in rat myocardium exposed to IR. The reduction of ventricular myocyte viability in IR group was inhibited by pretreatment with 50 and 100 mg/(kg·d) bicyclol (P<0.05 vs. IR), but not by 25 mg/(kg·d) bicyclol. The opening of mPTP evoked by Ca2+ was significantly inhibited by medium bicyclol.

Conclusions

Bicyclol exerts cardioprotection against IR injury, at least, via reducing oxidative stress and its subsequent mPTP opening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anand, K.V., Anandhi, R., Pakkiyaraj, M., Geraldine, P., 2011. Protective effect of chrysin on carbon tetrachloride (CCl4)-induced tissue injury in male Wistar rats. Toxicol. Ind. Health, 27(10):923–933. [doi:10.1177/07482337 11399324]

    Article  PubMed  CAS  Google Scholar 

  • Baines, C.P., Song, C.X., Zheng, Y.T., Wang, G.W., Zhang, J., Wang, O.L., Guo, Y., Bolli, R., Cardwell, E.M., Ping, P., 2003. Protein kinase Cɛ interacts with and inhibits the permeability transition pore in cardiac mitochondria. Circ. Res., 92(8):873–880. [doi:10.1161/01.RES.0000069215.36389.8D]

    Article  PubMed  CAS  Google Scholar 

  • Borutaite, V., Brown, G.C., 2003. Mitochondria in apoptosis of ischemic heart. FEBS Lett., 541(1–3):1–5. [doi:10.1016/S0014-5793(03)00278-3]

    Article  PubMed  CAS  Google Scholar 

  • Burwell, L.S., Brookes, P.S., 2008. Mitochondria as a target for the cardioprotective effects of nitric oxide in ischemia-reperfusion injury. Antioxid. Redox Signal., 10(3):579–599. [doi:10.1089/ars.2007.1845]

    Article  PubMed  CAS  Google Scholar 

  • Cao, C.M., Xia, Q., Bruce, I.C., Zhang, X., Fu, C., Chen, J.Z., 2003. Interleukin-2 increases activity of sarcoplasmic reticulum Ca2+-ATPase, but decreases its sensitivity to calcium in rat cardiomyocytes. J. Pharmacol. Exp. Ther., 306(2):572–580. [doi:10.1124/jpet.102.048264]

    Article  PubMed  CAS  Google Scholar 

  • Gao, Q., Pan, H.Y., Qiu, S., Lu, Y., Bruce, I.C., Luo, J.H., Xia, Q., 2006. Atractyloside and 5-hydroxydecanoate block the protective effect of puerarin in isolated rat. Life Sci., 79(3):217–224. [doi:10.1016/j.lfs.2005.12.040]

    Article  PubMed  CAS  Google Scholar 

  • Gao, Q., Yang, B., Ye, Z.G., Wang, J., Bruce, I.C., Xia, Q., 2007. Opening the calcium-activated potassium channel participates in the cardioprotective effect of puerarin. Eur. J. Pharmacol., 574(2-3):179–184. [doi:10.1016/j.ejphar. 2007.07.018]

    Article  PubMed  CAS  Google Scholar 

  • Gross, G.J., Auchampach, J.A., 2007. Reperfusion injury: does it exist?. J. Mol. Cell. Cardiol., 42(1):12–18. [doi:10.1016/j.yjmcc.2006.09.009]

    Article  PubMed  CAS  Google Scholar 

  • Halestrap, A.P., Clarke, S.J., Javadov, S.A., 2004. Mitochondrial permeability transition pore opening during myocardial reperfusion—a target for cardioprotection. Cardiovasc. Res., 61(3):372–385. [doi:10.1016/S0008-6363 (03)00533-9]

    Article  PubMed  CAS  Google Scholar 

  • Hamilton, K.L., 2007. Antioxidants and cardioprotection. Med. Sci. Sports Exerc., 39(9):1544–1553. [doi:10.1249/mss. 0b013e3180d099e8]

    Article  PubMed  CAS  Google Scholar 

  • Hausenloy, D.J., Maddock, H.L., Baxter, G.F., Yellon, D.M., 2002. Inhibiting mitochondrial permeability transition pore opening: a new paradigm for myocardial preconditioning?. Cardiovasc. Res., 55(3):534–543. [doi:10.1016/S0008-6363(02)00455-8]

    Article  PubMed  CAS  Google Scholar 

  • Hausenloy, D., Wynne, A., Duchen, M., Yellon, D., 2004. Transient mitochondrial permeability transition pore opening mediates preconditioning-induced protection. Circulation, 109(14):1714–1717. [doi:10.1161/01.CIR. 0000126294.81407.7D]

    Article  PubMed  CAS  Google Scholar 

  • He, W., Zhang, F.J., Wang, S.P., Chen, G., Chen, C.C., Yan, M., 2008. Postconditioning of sevoflurane and propofol is associated with mitochondrial permeability transition pore. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 9(2):100–108. [doi:10.1631/jzus.B0710586]

    Article  CAS  Google Scholar 

  • Hiebert, L., Ping, T., 1997. Protective effect of dextran sulfate and heparin on adult rat cardiomyocytes damaged by free radicals. J. Mol. Cell. Cardiol., 29(1):229–235. [doi:10.1006/jmcc.1996.0267]

    Article  PubMed  CAS  Google Scholar 

  • Hu, Q.W., Liu, G.T., 2006. Effects of bicyclol on dimethylnitrosamine-induced liver fibrosis in mice and its mechanism of action. Life Sci., 79(6):606–612. [doi:10.1016/j.lfs.2006.02.025]

    Article  PubMed  CAS  Google Scholar 

  • Huang, H., Shan, J., Pan, X.H., Wang, H.P., Qian, L.B., Xia, Q., 2007. Carvedilol improved diabetic rat cardiac function depending on antioxidant ability. Diabetes Res. Clin. Pract., 75(1):7–13. [doi:10.1016/j.diabres.2006.04.016]

    Article  PubMed  CAS  Google Scholar 

  • Katoh, H., Nishigaki, N., Hayashi, H., 2002. Diazoxide opens the mitochondrial permeability transition pore and alters Ca2+ transients in rat ventricular myocytes. Circulation, 105(22):2666–2671. [doi:10.1161/01.CIR.0000016831.41 648.04]

    Article  PubMed  CAS  Google Scholar 

  • Kroemer, G., 1998. The mitochondrion as an integrator/coordinator of cell death pathways. Cell Death Differ., 5(6):547. [doi:10.1038/sj.cdd.4400387]

    Article  PubMed  CAS  Google Scholar 

  • Liu, G.T., Li, Y., Wei, H.L., Lu, H., Zhang, H., Gao, Y.G., Wang, L.Z., 2005. Toxicity of novel anti-hepatitis drug bicyclol: a preclinical study. World J. Gastroenterol., 11(5):665–671.

    PubMed  CAS  Google Scholar 

  • Lu, H., Li, Y., 2002. Effects of bicyclol on aflatoxin B1 metabolism and hepatotoxicity in rats. Acta Pharmacol. Sin., 23(10):942–945.

    PubMed  CAS  Google Scholar 

  • Nakagawa, T., Shimizu, S., Watanabe, T., Yamaguchi, O., Ostu, K., Yamagata, H., Inohara, H., Kubo, T., Tsujimoto, Y., 2005. Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature, 434(7033):652–658. [doi:10.1038/nature03317]

    Article  PubMed  CAS  Google Scholar 

  • Solaini, G., Harris, D.A., 2005. Biochemical dysfunction in heart mitochondria exposed to ischaemia and reperfusion. Biochem. J., 390(Pt2):377–394. [doi:10.1042/BJ20042006]

    PubMed  CAS  Google Scholar 

  • Sun, H., Liu, G.T., 2006. Chemopreventive effect of bicyclol on malignant transformation of WB-F344 rat liver epithelial cells and its effect on related signal transduction in vitro. Cancer Lett., 236(2):239–249. [doi:10.1016/j.canlet.2005.05.019]

    Article  PubMed  CAS  Google Scholar 

  • Sun, L.N., Shen, J., Su, F., Wang, Q., Zhu, Y.J., Lou, X.E., Liang, H.W., Bruce, I.C., Xia, Q., 2009. Bicyclol attenuates oxidative stress and neuronal damage following transient forebrain ischemia in mouse cortex and hippocampus. Neurosci. Lett., 459(2):84–87. [doi:10.1016/j.neulet.2009.05.002]

    Article  PubMed  CAS  Google Scholar 

  • Swift, L.M., Sarvazyan, N., 2000. Localization of dichlorofluorescin in cardiac myocytes: implications for assessment of oxidative stress. Am. J. Physiol. Heart Circ. Physiol., 278(3):H982–H990.

    PubMed  CAS  Google Scholar 

  • Tao, X., Lu, L.Q., Xu, Q., Li, S.R., Lin, M.T., 2009. Cardioprotective effects of anesthetic preconditioning in rats with ischemia-reperfusion injury: propofol versus isoflurane. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechno.), 10(10):740–747. [doi:10.1631/jzus.B0920119]

    Article  CAS  Google Scholar 

  • Venardos, K.M., Perkins, A., Headrick, J., Kaye, D.M., 2007. Myocardial ischemia-reperfusion injury, antioxidant enzyme systems, and selenium: a review. Curr. Med. Chem., 14(14):1539–1549. [doi:10.2174/092986707780831078]

    Article  PubMed  CAS  Google Scholar 

  • Wang, H., Li, Y., 2006. Protective effect of bicyclol on acute hepatic failure induced by lipopolysaccharide and D-galactosamine in mice. Eur. J. Pharmacol., 534(1-3): 194–201. [doi:10.1016/j.ejphar.2005.12.080]

    Article  PubMed  CAS  Google Scholar 

  • Wasilewski, M., Wieckowski, M.R., Dymkowska, D., Wojtczak, L., 2004. Effects of N-acylethanolamines on mitochondrial energetics and permeability transition. Biochim. Biophys. Acta, 1657(2–3):151–163. [doi:10.1016/j.bbabio.2004.05.004]

    PubMed  CAS  Google Scholar 

  • Watanabe, T., Owada, S., Kobayashi, H.P., Kawakami, H., Nagaoka, S., Murakami, E., Ishiuchi, A., Enomoto, T., Jinnouchi, Y., Sakurai, J., et al., 2007. Protective effects of MnM2Py4P and Mn-salen against small bowel ischemia/reperfusion injury in rats using an in vivo and an ex vivo electron paramagnetic resonance technique with a spin probe. Transplant. Proc., 39(10):3002–3006. [doi:10.1016/j.transproceed.2007.08.091]

    Article  PubMed  CAS  Google Scholar 

  • Yellon, D.M., Hausenloy, D.J., 2007. Myocardial reperfusion injury. N. Engl. J. Med., 357(11):1121–1135. [doi:10.1056/NEJMra071667]

    Article  PubMed  CAS  Google Scholar 

  • Zhang, S.Z., Wang, N.F., Xu, J., Gao, Q., Lin, G.H., Bruce, I.C., Xia, Q., 2006. Kappa-opioid receptors mediate cardioprotection by remote preconditioning. Anesthesiology, 105(3):550–556. [doi:10.1097/00000542-200609000-00019]

    Article  PubMed  CAS  Google Scholar 

  • Zhao, D.M., Sun, T., Li, Y., 2002. The protective effect of bicyclol on ischemia-reperfusion induced kidney injury in rats. Acta Pharm. Sin., 37(6):412–414 (in Chinese). [doi:10.3321/j.issn:0513-4870.2002.06.004]

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ling-bo Qian or Hui-ping Wang.

Additional information

The two authors contributed equally to this work

Project (Nos. 2011C23105 and 2012C33088) supported by the Department of Science and Technology of Zhejiang Province, China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cui, J., Li, Z., Qian, Lb. et al. Reducing the oxidative stress mediates the cardioprotection of bicyclol against ischemia-reperfusion injury in rats. J. Zhejiang Univ. Sci. B 14, 487–495 (2013). https://doi.org/10.1631/jzus.B1200263

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1200263

Key words

CLC number

Navigation