Skip to main content
Log in

Up-regulation of mitochondrial antioxidation signals in ovarian cancer cells with aggressive biologic behavior

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

Objective

Recently, a high frequency of mutations in mitochondrial DNA (mtDNA) has been detected in ovarian cancer. To explore the alterations of proteins in mitochondria in ovarian cancer, a pair of human ovarian carcinoma cell lines (SKOV3/SKOV3.ip1) with different metastatic potentials was examined.

Methods

Cancer cells SKOV3.ip1 were derived from the ascitic tumor cells of nude mice bearing a tumor of ovarian cancer cells SKOV3. SKOV3.ip1 exhibited a higher degree of migration potential than its paired cell line SKOV3. The proteins in the mitochondria of these two cells were isolated and separated by 2-D gel electrophoresis. The differently expressed proteins were extracted and identified using matrix assisted laser desorption ionisation/time-of-flight/time-of-flight (MALDI-TOF/TOF), and finally a selected protein candidate was further investigated by immunohistochemistry (IHC) method in nude mice bearing tumor tissues of these two cells.

Results

A total of 35 spots with different expressions were identified between the two cells using 2D-polyacrylamide gel electrophoresis (PAGE) approach. Among them, 17 spots were detected only in either SKOV3 or SKOV3.ip1 cells. Eighteen spots expressed different levels, with as much as a three-fold difference between the two cells. Twenty spots were analyzed using MALDI-TOF/TOF, and 11 of them were identified successfully; four were known to be located in mitochondria, including superoxide dismutase 2 (SOD2), fumarate hydratase (FH), mitochondrial ribosomal protein L38 (MRPL38), and mRNA turnover 4 homolog (MRTO4). An increased staining of SOD2 was observed in SKOV3.ip1 over that of SKOV3 in IHC analysis.

Conclusions

Our results indicate that the enhanced antioxidation and metabolic potentials of ovarian cancer cells might contribute to their aggressive and metastatic behaviors. The underlying mechanism warrants further study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bai, F., Feng, J., Cheng, Y., Shi, J., Yang, R., Cui, H., 2006. Analysis of gene expression patterns of ovarian cancer cell lines with different metastatic potentials. Int. J. Gynecol. Cancer, 16(1):202–209. [doi:10.1111/j.1525-1438.2006.00296.x]

    Article  PubMed  CAS  Google Scholar 

  • Chen, Y., McMillan-Ward, E., Kong, J., Israels, S.J., Gibson, S.B., 2007. Mitochondrial electron-transport-chain inhibitors of complexes I and II induce autophagic cell death mediated by reactive oxygen species. J. Cell Sci., 120(23):4155–4166. [doi:10.1242/jcs.011163]

    Article  PubMed  CAS  Google Scholar 

  • Connor, K.M., Subbaram, S., Regan, K.J., Nelson, K.K., Mazurkiewicz, J.E., Bartholomew, P.J., Aplin, A.E., Tai, Y.T., Aguirre-Ghiso, J., Flores, S.C., et al., 2005. Mitochondrial H2O2 regulates the angiogenic phenotype via PTEN oxidation. J. Biol. Chem., 280(17):16916–16924. [doi:10.1074/jbc.M410690200]

    Article  PubMed  CAS  Google Scholar 

  • Connor, K.M., Hempel, N., Nelson, K.K., Dabiri, G., Gamarra, A., Belarmino, J., van de Water, L., Mian, B.M., Melendez, J.A., 2007. Manganese superoxide dismutase enhances the invasive and migratory activity of tumor cells. Cancer Res., 67(21):10260–10267. [doi:10.1158/0008-5472.CAN-07-1204]

    Article  PubMed  CAS  Google Scholar 

  • Gottlieb, E., Tomlinson, I.P., 2005. Mitochondrial tumour suppressors: a genetic and biochemical update. Nat. Rev. Cancer, 5(11):857–866. [doi:10.1038/nrc1737]

    Article  PubMed  CAS  Google Scholar 

  • Heerdt, B.G., Houston, M.A., Augenlicht, L.H., 2005. The intrinsic mitochondrial membrane potential of colonic carcinoma cells is linked to the probability of tumor progression. Cancer Res., 65(21):9861–9867. [doi:10.1158/0008-5472.CAN-05-2444]

    Article  PubMed  CAS  Google Scholar 

  • Hempel, N., Ye, H., Abessi, B., Mian, B., Melendez, J.A., 2009. Altered redox status accompanies progression to metastatic human bladder cancer. Free Radic. Biol. Med., 46(1):42–50. [doi:10.1016/j.freeradbiomed.2008.09.020]

    Article  PubMed  CAS  Google Scholar 

  • Hitchler, M.J., Wikainapakul, K., Yu, L., Powers, K., Attatippaholkun, W., Domann, F.E., 2006. Epigenetic regulation of manganese superoxide dismutase expression in human breast cancer cells. Epigenetics, 1(4):163–171. [doi:10.4161/epi.1.4.3401]

    Article  PubMed  Google Scholar 

  • Hu, Y., Rosen, D.G., Zhou, Y., Feng, L., Yang, G., Liu, J., Huang, P., 2005. Mitochondrial manganese-superoxide dismutase expression in ovarian cancer: role in cell proliferation and response to oxidative stress. J. Biol. Chem., 280(47):39485–39492. [doi:10.1074/jbc.M503296200]

    Article  PubMed  CAS  Google Scholar 

  • Huang, X.H., Wang, Q., Chen, J.S., Fu, X.H., Chen, X.L., Chen, L.Z., Li, W., Bi, J., Zhang, L.J., Fu, Q., et al., 2009. Bead-based microarray analysis of microRNA expression in hepatocellular carcinoma: miR-338 is downregulated. Hepatol. Res., 39(8):786–794. [doi:10.1111/j.1872-034X.2009.00502.x]

    Article  PubMed  CAS  Google Scholar 

  • Hurt, E.M., Thomas, S.B., Peng, B., Farrar, W.L., 2007. Molecular consequences of SOD2 expression in epigenetically silenced pancreatic carcinoma cell lines. Br. J. Cancer, 97(8):1116–1123. [doi:10.1038/sj.bjc.6604000]

    Article  PubMed  CAS  Google Scholar 

  • Lin, Y.W., Aplan, P.D., 2007. Gene expression profiling of precursor T-cell lymphoblastic leukemia/lymphoma identifies oncogenic pathways that are potential therapeutic targets. Leukemia, 21(6):1276–1284. [doi:10.1038/sj.leu.2404685]

    Article  PubMed  CAS  Google Scholar 

  • Naora, H., Montell, D.J., 2005. Ovarian cancer metastasis: integrating insights from disparate model organisms. Nat. Rev. Cancer, 5(5):355–366. [doi:10.1038/nrc1611]

    Article  PubMed  CAS  Google Scholar 

  • Nelson, K.K., Ranganathan, A.C., Mansouri, J., Rodriguez, A.M., Providence, K.M., Rutter, J.L., Pumiglia, K., Bennett, J.A., Melendez, J.A., 2003. Elevated SOD2 activity augments matrix metalloproteinase expression: evidence for the involvement of endogenous hydrogen peroxide in regulating metastasis. Clin. Cancer Res., 9(1): 424–432.

    PubMed  CAS  Google Scholar 

  • Newmeyer, D.D., Ferguson-Miller, S., 2003. Mitochondria: releasing power for life and unleashing the machineries of death. Cell, 112(4):481–490. [doi:10.1016/S0092-8674(03)00116-8]

    Article  PubMed  CAS  Google Scholar 

  • Pani, G., Koch, O.R., Galeotti, T., 2009. The p53-p66shc-manganese superoxide dismutase (MnSOD) network: a mitochondrial intrigue to generate reactive oxygen species. Int. J. Biochem. Cell Biol., 41(5):1002–1005. [doi: 10.1016/j.biocel.2008.10.011]

    Article  PubMed  CAS  Google Scholar 

  • Salzman, R., Kankova, K., Pacal, L., Tomandl, J., Horakova, Z., Kostrica, R., 2007. Increased activity of superoxide dismutase in advanced stages of head and neck squamous cell carcinoma with locoregional metastases. Neoplasma, 54(4):321–325.

    PubMed  CAS  Google Scholar 

  • Stewart, L., Glenn, G.M., Stratton, P., Goldstein, A.M., Merino, M.J., Tucker, M.A., Linehan, W.M., Toro, J.R., 2008. Association of germline mutations in the fumarate hydratase gene and uterine fibroids in women with hereditary leiomyomatosis and renal cell cancer. Arch. Dermatol., 144(12):1584–1592. [doi:10.1001/archdermatol.2008.517]

    Article  PubMed  Google Scholar 

  • Sudarshan, S., Sourbier, C., Kong, H.S., Block, K., Valera Romero, V.A., Yang, Y., Galindo, C., Mollapour, M., Scroggins, B., Goode, N., et al., 2009. Fumarate hydratase deficiency in renal cancer induces glycolytic addiction and hypoxia-inducible transcription factor 1α stabilization by glucose-dependent generation of reactive oxygen species. Mol. Cell. Biol., 29(15):4080–4090. [doi:10.1128/MCB.00483-09]

    Article  PubMed  CAS  Google Scholar 

  • Takada, S., Inoue, E., Tano, K., Yoshii, H., Abe, T., Yoshimura, A., Akita, M., Tada, S., Watanabe, M., Seki, M., et al., 2009. Generation and characterization of cells that can be conditionally depleted of mitochondrial SOD2. Biochem. Biophys. Res. Commun., 379(2):233–238. [doi: 10.1016/j.bbrc.2008.12.031]

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y., Liu, V.W., Xue, W.C., Cheung, A.N., Ngan, H.Y., 2006. Association of decreased mitochondrial DNA content with ovarian cancer progression. Br. J. Cancer, 95(8):1087–1091. [doi:10.1038/sj.bjc.6603377]

    Article  PubMed  CAS  Google Scholar 

  • Xu, Y., Fang, F., Dhar, S.K., Bosch, A., St. Clair, W.H., Kasarskis, E.J., St. Clair, D.K., 2008. Mutations in the SOD2 promoter reveal a molecular basis for an activating protein 2-dependent dysregulation of manganese superoxide dismutase expression in cancer cells. Mol. Cancer Res., 6(12):1881–1893. [doi:10.1158/1541-7786.MCR-08-0253]

    Article  PubMed  CAS  Google Scholar 

  • Ye, H., Wang, A., Lee, B.S., Yu, T., Sheng, S., Peng, T., Hu, S., Crowe, D.L., Zhou, X., 2008. Proteomic based identification of manganese superoxide dismutase 2 (SOD2) as a metastasis marker for oral squamous cell carcinoma. Cancer Genomics Proteomics, 5(2):85–94.

    PubMed  CAS  Google Scholar 

  • Yogev, O., Yogev, O., Singer, E., Shaulian, E., Goldberg, M., Fox, T.D., Pines, O., 2010. Fumarase: a mitochondrial metabolic enzyme and a cytosolic/nuclear component of the DNA damage response. PLoS Biol., 8(3):e1000328. [doi:10.1371/journal.pbio.1000328]

    Article  PubMed  Google Scholar 

  • Zejnilovic, J., Akev, N., Yilmaz, H., Isbir, T., 2009. Association between manganese superoxide dismutase polymorphism and risk of lung cancer. Cancer Genet. Cytogenet., 189(1):1–4. [doi:10.1016/j.cancergencyto.2008.06.017]

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Dong, L., Cui, H. et al. Up-regulation of mitochondrial antioxidation signals in ovarian cancer cells with aggressive biologic behavior. J. Zhejiang Univ. Sci. B 12, 346–356 (2011). https://doi.org/10.1631/jzus.B1000192

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1000192

Key words

CLC number

Navigation