Skip to main content
Log in

Assessment of different genetic distances in constructing cotton core subset by genotypic values

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

One hundred and sixty-eight genotypes of cotton from the same growing region were used as a germplasm group to study the validity of different genetic distances in constructing cotton core subset. Mixed linear model approach was employed to unbiasedly predict genotypic values of 20 traits for eliminating the environmental effect. Six commonly used genetic distances (Euclidean, standardized Euclidean, Mahalanobis, city block, cosine and correlation distances) combining four commonly used hierarchical cluster methods (single distance, complete distance, unweighted pair-group average and Ward’s methods) were used in the least distance stepwise sampling (LDSS) method for constructing different core subsets. The analyses of variance (ANOVA) of different evaluating parameters showed that the validities of cosine and correlation distances were inferior to those of Euclidean, standardized Euclidean, Mahalanobis and city block distances. Standardized Euclidean distance was slightly more effective than Euclidean, Mahalanobis and city block distances. The principal analysis validated standardized Euclidean distance in the course of constructing practical core subsets. The covariance matrix of accessions might be ill-conditioned when Mahalanobis distance was used to calculate genetic distance at low sampling percentages, which led to bias in small-sized core subset construction. The standardized Euclidean distance is recommended in core subset construction with LDSS method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Brown, A.H.D., 1989. Core collection: a practical approach to genetic resources management. Genome, 31:818–824.

    Google Scholar 

  • Brown, A.H.D., 1995. The Core Collection at the Crossroads. In: Hodgkin, T., Brown, A.H.D., van Hintum, T.J.L., Morales, E.A.V. (Eds.), Core Collections of Plant Genetic Resources. John Wiley and Sons, Chichester, UK, p.3–19.

    Google Scholar 

  • Chen, G.M., Qi, H.Y., Pan, W., 2002. Mathematical Statistics in MATLAB (6.x). Science Press, Beijing, p.189–198 (in Chinese).

    Google Scholar 

  • Crossa, J., DeLacy, I.H., Taba, S., 1995. The Use of Multivariate Methods in Developing a Core Collection. In: Hodgkin, T., Brown, A.H.D., van Hintum, T.J.L., Morales, E.A.V. (Eds.), Core Collections of Plant Genetic Resources. John Wiley and Sons, Chichester, UK, p.77–89.

    Google Scholar 

  • Frankel, O.H., 1984. Genetic Perspectives of Germplasm Conservation. In: Arber, W., Llimensee, K., Peacock, W. J. (Eds.), Genetic Manipulation: Impact on Man and Society. Cambridge University Press, UK, p.161–170.

    Google Scholar 

  • Hu, J., Zhu, J., Xu, H.M., 2000. Methods of constructing core collections by stepwise clustering with three sampling strategies based on the genotypic values of crops. Theoretical and Applied Genetics, 101(1–2):264–268. [doi:10.1007/s001220051478]

    Article  CAS  Google Scholar 

  • Kang, C.W., Kim, S.Y., Lee, S.W., Mathur, P.N., Hodgkin, T., Zhou, M.D., Lee, R.J., 2006. Selection of a core collection of Korean sesame germplasm by a stepwise clustering method. Breeding Science, 56(1):85–91. [doi:10.1270/jsbbs.56.85]

    Article  Google Scholar 

  • Li, C.T., Shi, C.H., Wu, J.G., Xu, H.M., Zhang, H.Z., Ren, Y.L., 2004. Methods of developing core collections based on the predicted genotypic value of rice (Oryza sativa L.). Theoretical and Applied Genetics, 108(6):1172–1176. [doi:10.1007/s00122-003-1536-1]

    Article  PubMed  CAS  Google Scholar 

  • Malosetti, M., Abadie, T., 2001. Sampling strategy to develop a core collection of Uruguayan maize landraces based on morphological traits. Genetic Resources and Crop Evolution, 48(4):381–390. [doi:10.1023/A:1012003611371]

    Article  Google Scholar 

  • Mosjidis, J.A., Klingler, K.A., 2006. Genetic diversity in the core subset of the US red clover germplasm. Crop Science, 46(2):758–762. [doi:10.2135/cropsci2005.05-0076]

    Article  Google Scholar 

  • Okpul, T., Singh, D., Gunua, T., Wagih, M.E., 2004. Assessment of diversity using agro-morphological traits for selecting a core sample of Papua New Guinea taro (Colocasia esculenta (L.) Schott) collection. Genetic Resources and Crop Evolution, 51(6):671–678. [doi:10.1023/B:GRES.0000024656.41571.09]

    Article  Google Scholar 

  • Qiu, L.J., Cao, Y.S., Chang, R.Z., Zhou, X.A., Wang, G.X., Sun, J.Y., Xie, H., Zhang, B., Li, X.H., Xu, Z.Y., Liu, L.H., 2003. Establishment of Chinese soybean (G. max) core collection. I. Sampling strategy. Scientia Agricultura Sinica, 36(12):1442–1449 (in Chinese).

    Google Scholar 

  • Rodiño, A.P., Santalla, M., Ron, A.M.D., Singh, S.P., 2003. A core collection of common bean from the Iberian peninsula. Euphytica, 131(2):165–175. [doi:10.1023/A:1023973309788]

    Article  Google Scholar 

  • Tanksley, S.D., McCouch, S.R., 1997. Seed bank and molecular maps: unlocking genetic potential from the wild. Science, 277(5329):1063–1066. [doi:10.1126/science.277.5329.1063]

    Article  PubMed  CAS  Google Scholar 

  • Upadhyaya, H.D., Ortiz, R., 2001. A mini core subset for capturing diversity and promoting utilization of chickpea genetic resources in crop improvement. Theoretical and Applied Genetics, 102(8):1292–1298. [doi:10.1007/s00122-001-0556-y]

    Article  Google Scholar 

  • Upadhyaya, H.D., Gowda, C.L.L., Pundir, R.P.S., Reddy, V.G., Singh, S., 2006. Development of core subset of finger millet germplasm using geographical origin and data on 14 quantitative traits. Genetic Resources and Crop Evolution, 53(4):679–685. [doi:10.1007/s10722-004-3228-3]

    Article  Google Scholar 

  • van Hintum, T.J.L., 1995. Hierarchical Approaches to the Analysis of Genetic Diversity in Crop Plants. In: Hodgkin, T., Brown, A.H.D., van Hintum, T.J.L., Morales, E.A.V. (Eds.), Core Collections of Plant Genetic Resources. John Wiley and Sons, Chichester, UK, p.23–34.

    Google Scholar 

  • Volk, G.M., Richards, C.M., Reilley, A.A., Henk, A.D., Forsline, P.L., Aldwinckle, H.S., 2005. Ex situ conservation of vegetatively propagated species: development of a seed-based core collection for Malus sieversii. Journal of the American Society for Horticultural Science, 130(2):203–210.

    Google Scholar 

  • Wang, J.C., Hu, J., Zhang, C.F., Zhang, S., 2007a. Assessment on evaluating parameters of rice core collections constructed by genotypic values and molecular marker information. Rice Science, 14(2):101–110. [doi:10.1016/S1672-6308(07)60015-8]

    Article  Google Scholar 

  • Wang, J.C., Hu, J., Xu, H.M., Zhang, S., 2007b. A strategy on constructing core collections by least distance stepwise sampling. Theoretical and Applied Genetics, 115(1):1–8. [doi:10.1007/s00122-007-0533-1]

    Article  PubMed  CAS  Google Scholar 

  • Xu, H.M., Mei, Y.J., Hu, J., Zhu, J., Gong, P., 2006. Sampling a core collection of island cotton (Gossypium barbadense L.) based on the genotypic values of fiber traits. Genetic Resources and Crop Evolution, 53(3):515–521. [doi:10.1007/s10722-004-2032-4]

    Article  Google Scholar 

  • Yan, W.G., Ruter, J.N., Bryant, R.J., Bockelman, H.E., Fjellstrom, R.G., Chen, M.H., Tai, T.H., McClung, A.M., 2007. Development and evaluation of a core subset of the USDA rice germplasm collection. Crop Science, 47(2):869–876.

    Google Scholar 

  • Yang, W.Q., Liu, L.T., Lin, H.Z., 1989. Multivariate Statistical Analysis. Higher Education Press, Beijing, China, p.208–209 (in Chinese).

    Google Scholar 

  • Zewdie, Y., Tong, N.K., Bosland, P., 2004. Establishing a core collection of capsicum using a cluster analysis with enlightened selection of accessions. Genetic Resources and Crop Evolution, 51(2):147–151. [doi:10.1023/B:GRES.0000020858.96226.38]

    Article  Google Scholar 

  • Zhu, J., Weir, B.S., 1996. Diallel analysis for sex-linked and maternal effects. Theoretical and Applied Genetics, 92(1):1–9. [doi:10.1007/BF00222944]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Hu.

Additional information

Project supported by the National Natural Science Foundation of China (No. 30270759), the Cooperation Project in Science and Technology between China and Poland Governments (No. 32–38), and the Scientific Research Foundation for Doctors in Shandong Academy of Agricultural Sciences (No. [2007]20), China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Jc., Hu, J., Huang, Xx. et al. Assessment of different genetic distances in constructing cotton core subset by genotypic values. J. Zhejiang Univ. Sci. B 9, 356–362 (2008). https://doi.org/10.1631/jzus.B0710615

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B0710615

Key words

CLC number

Navigation