Skip to main content
Log in

Wind characteristics near the ground during typhoon Meari

台风“米雷”近地层风特性实测研究

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

Wind speed and direction data during typhoon Meari were obtained from eight anemometers installed at heights of 10, 20, 30, and 40 m on a 40-m tower built in the Pudong area of Shanghai. Wind-turbulence characteristics, including wind-speed profile, turbulence integral scale, power spectra, correlations, and coherences were analyzed. Wind-speed profiles varied with time during the passage of Meari. Measured wind-speed profiles could be expressed well by both a power law and a log law. Turbulence integral scales for u, v, and w components all increased with wind speed. The ratios of the turbulence scales among the turbulence components averaged for all 10-min data were 1׃ 0.69׃0.08 at 10 m, 1׃0.61׃0.09 at 20 m, and 1׃0.65׃0.13 at 40 m. The turbulence integral scales for the u and v components increased with average gust time, but the turbulence integral scale for the w component remained almost constant when the gust duration was greater than 10 min. The decay factor of the coherence function increased slightly with wind speed, with average values for longitudinal and lateral dimensions of 14.3 and 11.3, respectively. The slope rates of the turbulence spectra in the inertial range were less than −5/3 at first, but gradually satisfied the Kolmogorov 5/3 law. The longitudinal wind-power fluctuation spectrum roughly fitted the von Karman spectrum, but slight deviations occurred in the high-frequency band for lateral and vertical wind-power fluctuation spectra.

抽象

目 的

对台风“米雷”作用下上海浦东近海岸边近地风特性进行全场监测记录, 获得10 m、20 m、30 m和40 m 高度处的风速实测数据, 以研究台风过程中的平均风速风向、湍流度、阵风因子、湍流积分尺度和脉动风速功率谱等近地风特性。

创新点

1. 利用浦东实测基地的测风塔, 获得10 m、20 m、30 m 和40 m 高度处台风“米雷”的风速实测数据。2. 对台风“米雷”作用下的近地风特性进行分析, 并对不同风特性参数之间的相互关系进行研究。

方 法

1. 在浦东实测基地建立40 m 高的测风塔, 利用现场实测的方法, 研究台风“米雷”作用下的近地层风场特性; 2. 利用经验公式拟合的方法, 将现场实测结果与经验公式所得结果进行比较, 并分析它们之间的差异。

结 论

1. 各向湍流积分尺度均呈现随平均风速的增大而增大的趋势, 在10 m、20 m 和40 m 高度处各向湍流积分尺度的均值之比分别为 1:0.69:0.08、1:0.61:0.09 和 1:0.65:0.13; 2. 当平均时距大于10 min 时, u 和v 方向的湍流积分尺度随平均时距的增大而增大, 但w 方向的湍流积分尺度基本不随平均时距的改变而改变; 3. 台风初期惯性子区各湍流分量功率谱的分布斜率小于−5/3, 随后逐渐满足Kolmogorov 5/3 率, 纵向脉动风速功率谱与von Karman 经验谱吻合较好, 而横向和竖向脉动风速功率谱与von Karman 经验谱在高频段有所偏差。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AIJ (Architectural Institute of Japan), 2004. AIJ 2004 Recommendations for Loads on Buildings. AIJ, Tokyo, Japan.

  • ASCE (American Society of Civil Engineers), 2010. Minimum Design Loads for Buildings and Other Structures, ASCE/SEI 7-10. ASCE, Reston, VA, USA.

  • BSI (British Standards Institution), 2004. “Structural Eurocodes”, Eurocode 1: Actions on Structures-General Actions-Part 1-4: Wind actions, Technical Committee CEN/TC250. BSI, London, UK.

  • Cao, S.Y., Tamura, Y., Kikuchi, N., et al., 2009. Wind characteristics of a strong typhoon. Journal of Wind Engineering and Industrial Aerodynamics, 97(1):11–21. http://dx.doi.org/10.1016/j.jweia.2008.10.002

    Article  Google Scholar 

  • Choi, E.C.C., 1978. Characteristics of typhoons over the South China Sea. Journal of Wind Engineering and Industrial Aerodynamics, 3(4):353–365. http://dx.doi.org/10.1016/0167-6105(78)90038-7

    Article  Google Scholar 

  • Davenport, A.G., 1960. Rationale for determining design wind velocities. ASCE Journal of the Structural Division, 86(5):39–68.

    Google Scholar 

  • Davenport, A.G., 1968. The dependence of wind load on meteorological parameters. In: Wind Effects on Building and Structures. University of Toronto Press, Toronto, Canada, p.19–82.

    Google Scholar 

  • Deaves, D.M., 1981a. Computations of wind flow over changes in surface roughness. Journal of Wind Engineering and Industrial Aerodynamics, 7(1):65–94. http://dx.doi.org/10.1016/0167-6105(81)90068-4

    Article  Google Scholar 

  • Deaves, D.M., 1981b. Terrain dependence of longitudinal R.M.S. velocities in the neutral atmosphere. Journal of Wind Engineering and Industrial Aerodynamics, 8(3): 259–274. http://dx.doi.org/10.1016/0167-6105(81)90025-8

    Article  Google Scholar 

  • Deaves, D.M., Harris, R.I., 1978. A Mathematical Model of the Structure of Strong Winds. Technical Report, Construction Industry Research and Information Association, London, UK.

  • Flay, G.J., Stevenson, D.C., 1988. Integral length scales in strong winds below 20 m. Journal of Wind Engineering and Industrial Aerodynamics, 28(1-3):21–30. http://dx.doi.org/10.1016/0167-6105(88)90098-0

    Article  Google Scholar 

  • Geernaert, G.L., 1988. Measurements of the angle between the wind vector and wind stress vector in the surface layer over the North Sea. Journal of Geophysical Research: Oceans, 93(C7):8215–8220. http://dx.doi.org/10.1029/JC093iC07p08215

    Article  Google Scholar 

  • Grimmond, C.S.B., King, T.S., Roth, M., et al., 1998. Aerodynamic roughness of urban areas derived from wind observations. Boundary-Layer Meteorology, 89(1):1–24. http://dx.doi.org/10.1023/A:1001525622213

    Article  Google Scholar 

  • Huang, P., Wang, X., Gu, M., 2012. Field experiments for wind loads on a low-rise building with adjustable pitch. International Journal of Distributed Sensor Networks, 2012: 1–10. http://dx.doi.org/10.1155/2012/451879

    Google Scholar 

  • Hui, M.C.H., Larsen, A., Xiang, H.F., 2009. Wind turbulence characteristics study at the Stonecutters Bridge site: part II—wind power spectra, integral length scales and coherences. Journal of Wind Engineering and Industrial Aerodynamics, 97(1):48–59. http://dx.doi.org/10.1016/j.jweia.2008.11.003

    Article  Google Scholar 

  • Kato, N., Ohkuma, T., Kim, J.R., et al., 1992. Full scale measurements of wind speed in two urban areas using an ultrasonic anemometer. Journal of Wind Engineering and Industrial Aerodynamics, 41(1-3):67–78. http://dx.doi.org/10.1016/0167-6105(92)90394-P

    Article  Google Scholar 

  • Li, Q.S., Zhi, L., Hu, F., 2010. Boundary layer wind structure from observations on a 325 m tower. Journal of Wind Engineering and Industrial Aerodynamics, 98(12):818–832. http://dx.doi.org/10.1016/j.jweia.2010.08.001

    Article  Google Scholar 

  • Liu, M., Liao, H., Li, M., et al., 2012. Long-term field measurement and analysis of the natural wind characteristics at the site of Xi-hou-men Bridge. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 13(3):197–207. http://dx.doi.org/10.1631/jzus.A1100178

    Article  Google Scholar 

  • Ly, L.N., 1993. Effects of the angle between wind stress and wind velocity vectors on the aerodynamic drag coefficient at the air-sea interface. Journal of Physical Oceanography, 23(1):159–163. http://dx.doi.org/10.1175/1520-0485(1993)023<0159:EOTABW>2.0.CO;2

    Article  Google Scholar 

  • Panofsky, H.A., Dutton, J.A., 1984. Atmospheric Turbulence: Models and Methods for Engineering Applications. John Wiley & Sons, Inc., New York, USA, p.62–63.

    Google Scholar 

  • Patil, M.N., 2006. Aerodynamic drag coefficient and roughness length for three seasons over a tropical western Indian station. Atmospheric Research, 80(4):280–293. http://dx.doi.org/10.1016/j.atmosres.2005.10.005

    Article  Google Scholar 

  • Prandtl, L., 1949. Führer durch die Strömungslehre. Friedrich Vieweg & Sohn, Braunschweig, Germany (in German).

    MATH  Google Scholar 

  • Rotach, M.W., 1993. Turbulence close to a rough urban surface part I: Reynolds stress. Boundary-Layer Meteorolgy, 65(1-2):1–28. http://dx.doi.org/10.1007/BF00708816

    Article  Google Scholar 

  • Schroeder, J.L., Smith, D.A., 2003. Hurricane Bonnie wind flow characteristics as determined from WEMITE. Journal of Wind Engineering and Industrial Aerodynamics, 91(6):767–789. http://dx.doi.org/10.1016/S0167-6105(02)00475-0

    Article  Google Scholar 

  • Shiau, B.S., 2000. Velocity spectra and turbulence statistics at the northeastern coast of Taiwan under high-wind condition. Journal of Wind Engineering and Industrial Aerodynamics, 88(2-3):139–151. http://dx.doi.org/10.1016/S0167-6105(00)00045-3

    Article  Google Scholar 

  • Simiu, E., Scanlan, R.H., 1996. Wind Effects on Structures —Fundamentals and Applications to Design. John Wiley & Sons, Inc., USA.

    Google Scholar 

  • Song, L.L., Li, Q.S., Chen, W.C., et al., 2012. Wind characteristics of a strong typhoon in marine surface boundary layer. Wind and Structures, 15(1):1–15. http://dx.doi.org/10.12989/was.2012.15.1.001

    Article  Google Scholar 

  • Tieleman, H.W., 2008. Strong wind observations in the atmospheric surface layer. Journal of Wind Engineering and Industrial Aerodynamics, 96(1):41–77. http://dx.doi.org/10.1016/j.jweia.2007.03.003

    Article  Google Scholar 

  • von Karman, T., 1948. Progress in the statistical theory of turbulence. Proceedings of the National Academy of Sciences of the United States of America, 34(11):530–539.

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, H., Li, A., Niu, J., et al., 2013. Long-term monitoring of wind characteristics at Sutong Bridge site. Journal of Wind Engineering and Industrial Aerodynamics, 115:39–47. http://dx.doi.org/10.1016/j.jweia.2013.01.006

    Article  Google Scholar 

  • Wang, H., Guo, T., Tao, T.Y., et al., 2015. Study on wind characteristics of Runyang Suspension Bridge based on long-term monitored data. International Journal of Structural Stability and Dynamics, 16(4):1640019. http://dx.doi.org/10.1142/s0219455416400198

    Article  Google Scholar 

  • Wang, X., Huang, P., Gu, M., 2012. Field investigation on wind loads of a low building with adjustable roof pitch near sea. Journal of Vibration and Shock, 31(20):84–89 (in Chinese).

    Google Scholar 

  • Weber, R.O., 1999. Remarks on the definition and estimation of friction velocity. Boundary-Layer Meteorology, 93(2): 197–209. http://dx.doi.org/10.1023/A:1002043826623

    Article  Google Scholar 

  • Xiao, Y.Q., Li, L.X., Song, L.L., 2009. Study on typhoon wind characteristics based on field measurements. The Seventh Asia-Pacific Conference on Wind Engineering.

    Google Scholar 

  • Xu, Y.L., Zhan, S., 2001. Field measurements of Di Wang Tower during Typhoon York. Journal of Wind Engineering and Industrial Aerodynamics, 89(1):73–93. http://dx.doi.org/10.1016/S0167-6105(00)00029-5

    Article  Google Scholar 

  • Yu, B., Chowdhury, A.G., 2009. Gust factors and turbulence intensities for the tropical cyclone environment. Journal of Applied Meteorology and Climatology, 48(3):534–552. http://dx.doi.org/10.1175/2008JAMC1906.1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Huang.

Additional information

Project supported by the National Natural Science Foundation of China (No. 51378396), the Open Project of Guangxi Key Laboratory of Disaster Prevention and Structural Safety (No. 2014ZDK005), and the Chongqing Postdoctoral Science Foundation (No. Xm2015066), China

ORCID: Xu WANG, http://orcid.org/0000-0001-5131-4016; Peng HUANG, http://orcid.org/0000-0002-5746-328X

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Huang, P., Yu, Xf. et al. Wind characteristics near the ground during typhoon Meari. J. Zhejiang Univ. Sci. A 18, 33–48 (2017). https://doi.org/10.1631/jzus.A1500310

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A1500310

Keywords

关键词

CLC number

Navigation