Skip to main content
Log in

Multiphysics extension to physically based analyses of pipes with emphasis on frost actions

  • Published:
Journal of Zhejiang University SCIENCE A Aims and scope Submit manuscript

Abstract

Pipes, especially buried pipes, in cold regions generally experience a rash of failures during cold weather snaps. However, the existing heuristic models are unable to explain the basic processes involving frost actions. This is because the frost action is not a direct load but one that causes variations in pipe-soil interactions resulting from the coupled thermohydro-mechanical process in soils. This paper developed and implemented a holistic multiphysics simulation model for freezing soils and extended it to the analysis of pipe-soil systems. The theoretical framework was implemented to analyze both static and dynamic responses of buried pipes subjected to frost actions. The multiphysics simulations reproduced phenomena commonly observed during frost actions, e.g., ice fringe advancement and an increase in the internal stress of pipes. The influences of important design factors, i.e., buried depth and overburden pressure, on pipe responses were simulated. A fatigue cracking criterion was utilized to predict the crack initialization under the joint effects of frost and dynamic traffic loads. The frost effects were found to have detrimental effects for accelerating fatigue crack initialization in pipes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, M., Tice, A.R., McKim, H.L., 1973. The Unfrozen Water and the Apparent Specific Heat Capacity of I Frozen Soils. Permafrost, North American Contribution to the 2nd International Conference, National Academy of Sciences, Washington, DC.

  • Bai, M., Elsworth, D., 2000. Coupled Processes in Subsurface Deformation, Flow and Transport. ASCE Press, Reston, VA.

    Google Scholar 

  • Biot, M.A., 1941. General theory of three-dimensional consolidation. Journal of Applied Physics, 12(2):155–164. [doi:10.1063/1.1712886]

    Article  MATH  Google Scholar 

  • Cary, J.W., 1965. Water flux in moist soil: thermal versus suction gradients. Soil Science, 100(3):168–175. [doi:10.1097/00010694-196509000-00004]

    Article  Google Scholar 

  • Cass, A.G., Campbell, G.S., Jones, T.L., 1981. Hydraulic and Thermal Properties of Soil Samples from the Buried Waster Test Facility. PNL-4015. Pacific Northwest Laboratory, Richland, WA.

    Book  Google Scholar 

  • Celia, M.A., Binning, P., 1992. A mass conservative numerical solution for two-phase flow in porous media with application to unsaturated flow. Water Resources Research, 28(10):2819–2828. [doi:10.1029/92WR01488]

    Article  Google Scholar 

  • Ciottoni, A.S., 1983. Computerized Data Management in Determining Causes of Water Main Breaks: the Philadelphia Case Study. Proceedings of the International Symposium on Urban Hydrology, Hydraulics and Sediment Control, University of Kentucky, Lexington, KY.

  • Ciottoni, A.S., 1985. Updating the New York City Water System. Proceedings of the Specialty Conference on Infrastructure for Urban Growth, San Diego, USA, p.69–77.

  • Doron, P., Granica, D., Barnea, D., 1987. Slurry flow in horizontal pipes: experimental and modeling. International Journal of Multiphase Flow, 13(4):535–547. [doi:10.1016/0301-9322(87)90020-6]

    Article  Google Scholar 

  • Fisher, K., Bullen, F., Beal, D., 2001. The durability of cellulose fibre reinforced concrete pipes in sewage applications. Cement and Concrete Research, 31(4):543–553. [doi:10.1016/S0008-8846(00)00451-8]

    Article  Google Scholar 

  • Flerchinger, G.N., Pierson, F.B., 1991. Modeling plant canopy effects on variability of soil temperature and water. Agricultural and Forest Meteorology, 56(3–4):227–246. [doi:10.1016/0168-1923(91)90093-6]

    Article  Google Scholar 

  • Forman, R.G., Kearney, V.E., Engle, R.M., 1967. Numerical analysis of crack propagation in cyclic-loaded structures. Journal of Basic Engineering, 89:459–464.

    Article  Google Scholar 

  • Fredlund, D.G., Rahardjo, H., 1993. Soil Mechanics for Unsaturated Soils. Wiley, New York. [doi:10.1002/9780470172759]

    Book  Google Scholar 

  • Hansson, K., Simunek, J., Mizoguchi, M., Lundin, L.C., van Genuchten, M.T., 2004. Water flow and heat transport in frozen soil: numerical solution and freeze-thaw applications. Vadose Zone Journal, 3(2):693–704. [doi:10.2136/vzj2004.0693]

    Google Scholar 

  • Hu, Y., Hubble, D.W., 2007. Factors contributing to the failure of asbestos cement water mains. Canadian Journal of Civil Engineering, 34(5):608–621. [doi:10.1139/l06-162]

    Article  Google Scholar 

  • Jansson, P.E., Karlberg, L., 2001. Coupled Heat and Mass Transfer Model for Soil-Plant-Atmosphere Systems. Royal Institute of Technology, Department of Civil and Environmental Engineering, Stockholm.

  • Kay, B.D., Groenevelt, P.H., 1974. On the interaction of water and heat transport in frozen and unfrozen soils: I. basic theory: the vapor phase. Soil Science Society of America Journal, 38(3):395–400. [doi:10.2136/sssaj1974.03615995003800030011x]

    Article  Google Scholar 

  • Kim, S.T., Tadjiev, D., Yang, H.T., 2006. Fatigue life prediction under random loading conditions in 7475-T7351 aluminum alloy using the RMS model. International Journal of Damage Mechanics, 15(1):89–102. [doi:10.1177/1056789506058605]

    Article  Google Scholar 

  • Kleiner, Y., Rajani, B.B., 2001. Comprehensive review of structural deterioration of water mains: statistical models. Urban Water, 3(3):131–150. [doi:10.1016/S1462-0758(01)00033-4]

    Article  Google Scholar 

  • Konrad, J.M., Morgenstern, N.R., 1982. Effects of applied pressure of freezing soils. Canadian Geotechnical Journal, 19(4):494–505. [doi:10.1139/t82-053]

    Article  Google Scholar 

  • Konrad, J.M., Morgenstern, N.R., 1984. Frost heave prediction of chilled pipelines buried in unfrozen soils. Canadian Geotechnical Journal, 21(1):100–115. [doi:10.1139/t84-008]

    Article  Google Scholar 

  • Liu, Z., Yu, X., 2011. Coupled thermo-hydro-mechanical model for porous materials under frost action: theory and implementation. Acta Geotechnica, 6(2):51–65. [doi:10.1007/s11440-011-0135-6]

    Article  Google Scholar 

  • Liu, Z., Sun, Y., Yu, X., 2012. Theoretical basis for modeling porous geomaterials under frost action: a review. Soil Science Society of American Journal, 76(2):313–330. [doi:10.2136/sssaj2010.0370]

    Article  Google Scholar 

  • Lochbaum, B.S., 1993. PSE&G develop models to predict main breaks. Pipeline Gas J., 220:20–27.

    Google Scholar 

  • Makar, J.M., 2000. A preliminary analysis of failures in grey cast iron water pipes. Engineering Failure Analysis, 7(1): 43–53. [doi:10.1016/S1350-6307(99)00005-9]

    Article  Google Scholar 

  • Margevicius, A., Haddad, P., 2002. Catastrophic Failures of Cleveland’s Large Diameter Water Mains. Proceedings of Pipeline Division Specialty Conference, p.1–48. [doi:10.1061/40641(2002)25]

  • Milly, P.C.D., 1982. Moisture and heat transport in hysteretic, inhomogeneous porous media: a matric head-based formulation and a numerical model. Water Resources Research, 18(3):489–498. [doi:10.1029/WR018i003p00489]

    Article  Google Scholar 

  • McInnes, K.J., 1981. Thermal Conductivities of Soils from Dryland Wheat Regions of Eastern Washington. MS Thesis, Washington State University, Pullman.

    Google Scholar 

  • Morris, B.S., 1967. Principal causes and remedies of water main breaks. Journal of American Water Works Association, 54:782–798.

    Google Scholar 

  • Moser, A.P., 2008. Buried Pipe Design. McGraw-Hill Companies, Inc., New York.

    Google Scholar 

  • Nassar, I.N., Horton, R., 1992. Simultaneous transfer of heat, water, and solute in porous media: I. theoretical development. Soil Science Society of America Journal, 56(5):1350–1356. [doi:10.2136/sssaj1992.03615995005600050004x]

    Article  Google Scholar 

  • Nassar, I.N., Horton, R., 1997. Heat, water, and solute transfer in unsaturated porous media: I-theory development and transport coefficient evaluation. Transport in Porous Media, 27(1):17–38. [doi:10.1023/A:1006583918576]

    Article  Google Scholar 

  • Needham, D., Howe, M., 1987. Why gas mains fail. part 1. Pipe Line Industry, 55:47–50.

    Google Scholar 

  • Nesic, S., 2007. Key issues related to modelling of internal corrosion of oil and gas pipelines: a review. Corrosion Science, 49(12):4308–4338. [doi:10.1016/j.corsci.2007.06.006]

    Article  Google Scholar 

  • Noborio, K., McInnes, K.J., Heilman, J.L., 1996a. Twodimensional model for water, heat and solute transport in furrow-irrigated soil: I. theory. Soil Science Society of America Journal, 60(4):1001–1009. [doi:10.2136/sssaj1996.03615995006000040007x]

    Article  Google Scholar 

  • Noborio, K., McInnes, K.J., Heilman, J.L., 1996b. Two-dimensional model for water, heat, and solute transport in furrow-irrigated soil: II. field evaluation. Soil Science Society of America Journal, 60(4):1010–1021. [doi:10.2136/sssaj1996.03615995006000040008x]

    Article  Google Scholar 

  • Noorishad, J., Tsang, C.F., 1996. Coupled Thermo-Hydro-Elasticity Phenomena in Variably Saturated Fractured Porous Rocks-Formulation and Numerical Solution. In: Coupled Thermo-Hydro-Mechanical Processes of Fractured Media, Elsevier, Rotterdam.

  • Noorishad, J., Tsang, C.F., Witherspoon, P.A., 1992. Theoretical and field studies of coupled hydromechanical behaviour of fractured rocks-1: development and verification of a numerical simulator. International Journal of Rock Mechanics and Mining Science & Geomechanical Abstracts, 29(4):401–409.

    Article  Google Scholar 

  • Papadopoulos, G., Welter, G.J., 2001. Predicting Water Main Breaks in Winter. In: New Horizons in Drinking Water Annual Conference, Washington, DC.

  • Philip, J.R., de Vries, D.A., 1957. Moisture movement in porous materials under temperature gradients. Transactions, American Geophysics Union, 38(2):222–232.

    Google Scholar 

  • Rajani, B., Kleiner, Y., 2001. Comprehensive review of structural deterioration of water mains: physically based models. Urban Water, 3(3):151–164. [doi:10.1016/S1462-0758(01)00032-2]

    Article  Google Scholar 

  • Rajani, B., Zhan, C., Kuraoka, S., 1996. Pipe-soil interaction analysis of jointed water mains. Canadian Geotechnical Journal, 33(3):393–404. [doi:10.1139/t96-061]

    Article  Google Scholar 

  • Rutqvist, J., Börgesson, L., Chijimatsu, M., Kobayashi, A., Jing, L., Nguyen, T.S., Noorishada, J., Tsang, C.F., 2001. Thermo-hydro-mechanics of partially saturated geological media: governing equations and formulation of four finite element models. International Journal of Rock Mechanics and Mining Science & Geomechanical Abstracts, 38(1): 105–127.

    Article  Google Scholar 

  • Sahimi, M., 1995. Flow and Transport in Porous Media and Fractured Rock: from Classical Methods to Modern Approaches. VCH, Weinheim, Germany.

    MATH  Google Scholar 

  • Scanlon, B.R., Milly, P.C.D., 1994. Water and heat fluxes in desert soils 2: numerical simulations. Water Resources Research, 30(3):721–733. [doi:10.1029/93WR03252]

    Article  Google Scholar 

  • Smith, W.H., 1976. Frost loadings on underground pipe. Journal of American Water Works Association, 68(12): 673–674.

    Google Scholar 

  • Sophocleous, M., 1979. Analysis of water and heat in unsaturated-saturated porous media. Water Resources Research, 15(5):1195–1206. [doi:10.1029/WR015i005p01195]

    Article  Google Scholar 

  • Stephansson, O., Jing, L., Tsang, C.F., 1997. Coupled Thermo-Hydro-Mechanical Processes of Fractured Media. Elsevier, Rotterdam.

    Google Scholar 

  • Thomas, H.R., He, Y., 1995. Analysis of coupled heat, moisture and air transfer in a deformable unsaturated soil. Geotechnique, 45(4):677–689. [doi:10.1680/geot.1995.45. 4.677]

    Article  Google Scholar 

  • Thomas, H.R., Cleall, P., Li, Y.C., Harris, C., Kern-Luetschg, M., 2009. Modelling of cryogenic processes in permafrost and seasonally frozen soils. Geotechnique, 59(3):173–184. [doi:10.1680/geot.2009.59.3.173]

    Article  Google Scholar 

  • Walski, T.M., 1982. Economic analysis of water main breaks. Journal of American Water Works Association, 74(3): 140–147.

    Google Scholar 

  • Wang, W., Kosakowski, G., Kolditz, O., 2009. A parallel finite element scheme for thermo-hydro-mechanical (THM) coupled problems in porous media. Computers & Geosciences, 35(8):1631–1641. [doi:10.1016/j.cageo. 2008.07.007]

    Article  Google Scholar 

  • Young, O.C., Trott, J.J., 1984. Buried Rigid Pipes. Elsevier, London.

    Google Scholar 

  • Zhan, C., Rajani, B., 1997. Estimation of frost load in a trench: theory and experiment. Canadian Geotechnical Journal, 34(4):568–579. [doi:10.1139/cgj-34-4-568]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiong Bill Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z., Yu, X.B., Tao, Jl. et al. Multiphysics extension to physically based analyses of pipes with emphasis on frost actions. J. Zhejiang Univ. Sci. A 13, 877–887 (2012). https://doi.org/10.1631/jzus.A12ISGT2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A12ISGT2

Key words

CLC number

Navigation