Skip to main content
Log in

Physically-based approach to analyze rainfall-triggered landslide using hydraulic gradient as slide direction

  • Published:
Journal of Zhejiang University SCIENCE A Aims and scope Submit manuscript

Abstract

An infinite slope stability numerical model driven by the comprehensive physically-based integrated hydrology model (InHM) is presented. In this approach, the failure plane is assumed to be parallel to the hydraulic gradient instead of the slope surface. The method helps with irregularities in complex terrain since depressions and flat areas are allowed in the model. The present model has been tested for two synthetic single slopes and a small catchment in the Mettman Ridge study area in Oregon, United States, to estimate the shallow landslide susceptibility. The results show that the present approach can reduce the simulation error of hydrological factors caused by the rolling topography and depressions, and is capable of estimating spatial-temporal variations for landslide susceptibilities at simple slopes as well as at catchment scale, providing a valuable tool for the prediction of shallow landslides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bathurst, J.C., Moretti, G., El-Hames, A., Moaven-Hashemi, A., Burton, A., 2005. Scenario modelling of basin-scale, shallow landslide sediment yield, Valsassina, Italian Southern Alps. Natural Hazards and Earth System Science, 5(2):189–202. [doi:10.5194/nhess-5-189-2005]

    Article  Google Scholar 

  • Baum, R.L., Savage, W.Z., Godt, J.W., 2002. TRIGRS—A FORTRAN Program for Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Analysis. Open-File Report 02-424, US Department of the Interior and US Geological Survey.

  • Beville, S.H., Mirus, B.B., Ebel, B.A., Mader, G.G., Loague, K., 2010. Using simulated hydrologic response to revisit the 1973 Lerida Court landslide. Environmental Earth Science, 61(6):1249–1257. [doi:10.1007/s12665-010-0448-z]

    Article  Google Scholar 

  • Bovolo, C.I., Bathurst, J.C., 2011. Modelling catchment-scale shallow landslide occurrence and sediment yield as a function of rainfall return period. Hydrological Processes, 21(6):579–596. [doi:10.1002/hyp.8158]

    Google Scholar 

  • Burroughs, E.R.Jr., Hammond, C.J., Booth, G.D., 1985. Relative Stability Estimation for Potential Debris Avalanche Sites Using Field Data. Proceedings of the International Symposium on Erosion, Debris Flow and Disaster Prevention, Erosion Control Society, Tokyo.

  • Burton, A., Bathurst, J.C., 1998. Physically based modelling of shallow landslide sediment yield at a catchment scale. Environmental Geology, 35(2–3):89–99. [doi:10.1007/s002540050296]

    Article  Google Scholar 

  • Chang, C.L., 2007. Influence of moving rainstorms on watershed responses. Environmental Engineering Science, 24(10):1353–1360. [doi:10.1089/ees.2006.0220]

    Article  Google Scholar 

  • Chen, C.Y., Chen, T.C., Yu, F.C., Lin, S.C., 2005. Analysis of time-varying rainfall infiltration induced landslide. Environmental Geology, 48(4-5):466–479. [doi:10.1007/s00254-005-1289-z]

    Article  Google Scholar 

  • Claessens, L., Heuvelink, G.B.M., Schoorl, J.M., Veldkamp, A., 2005. DEM resolution effects on shallow landslide hazard and soil redistribution modelling. Earth Surface Processes and Landforms, 30(4):461–477. [doi:10.1002/esp.1155]

    Article  Google Scholar 

  • Dietrich, W.E., Montgomery, D.R., 1998. SHALSTAB: A Digital Terrain Model for Mapping Shallow Landslide Potential. National Council of the Paper Industry for Air and Stream Improvement (NCASI), Technical Report.

  • Dietrich, W.E., de Asua, R.R., Coyle, J., Orr, B., Trso, M., 1998. A Validation Study of the Shallow Slope Stability Model, SHALSTAB, in Forested Lands of Northern California. Prepared for Louisiana-Pacific Corporation by Department of Geology and Geophysics, University of California, Berkeley and Stillwater Ecosystem, Watershed & Riverine Sciences, Berkeley, California.

  • Ebel, B.A., Loague, K., 2008. Rapid simulated hydrologic response within the variably saturated near surface. Hydrological Processes, 22(3):464–471. [doi:10.1002/hyp.6926]

    Article  Google Scholar 

  • Ebel, B.A., Loague, K., Montgomery, D.R., Dietrich, W.E., 2008. Physics-based continuous simulation of long-term near-surface hydrologic response for the Coos Bay experimental catchment. Water Resource Research, 44(7): W07417. [doi:10.1029/2007WR006442]

    Article  Google Scholar 

  • Ebel, B.A., Mirus, B.B., Heppner, C.S., VanderKwaak, J.E., Loague, K., 2009. First-order exchange coefficient coupling for simulating surface water-groundwater interactions: Parameter sensitivity and consistency with a physics-based approach. Hydrological Processes, 23(13):1949–1959. [doi:10.1002/hyp.7279]

    Article  Google Scholar 

  • Ebel, B.A., Loague, K., Borja, R.I., 2010. The impacts of hysteresis on variably-saturated hydrologic response and slope failure. Environmental Earth Sciences, 61(6): 1215–1225. [doi:10.1007/s12665-009-0445-2]

    Article  Google Scholar 

  • Fernandes, N.F., Guimarães, R.F., Gomes, R.A.T., Vieira, B.C., Montgomery, D.R., Greenberg, H., 2004. Topographic controls of landslides in Rio de Janeiro: field evidence and modeling. CATENA, 55(2):163–181. [doi:10.1016/S0341-8162(03)00115-2]

    Article  Google Scholar 

  • Guimaraes, R.F., Montgomery, D.R., Greenberg, H.M., Fernandes, N.F., Trancoso Gomes, R.A., de Carvalho, O.A., 2003. Parameterization of soil properties for a model of topographic controls on shallow landsliding: application to Rio de Janeiro. Engineering Geology, 69(1–2):99–108. [doi:10.1016/s0013-7952(02)00263-6]

    Article  Google Scholar 

  • Hencher, S.R., 2010. Preferential flow paths through soil and rock and their association with landslides. Hydrological Processes, 24(12):1610–1630. [doi:10.1002/hyp.7721]

    Article  Google Scholar 

  • Heppner, C.S., Loague, K., 2008. A dam problem: Simulated upstream impacts for a Searsville-like watershed. Ecohydrology, 1(4):408–424. [doi:10.1002/eco.34]

    Article  Google Scholar 

  • Iverson, R.M., 1990. Groundwater flow fields in infinite slopes. Geotechnique, 40(1):139–143. [doi:10.1680/geot.1990.40.1.139]

    Article  MathSciNet  Google Scholar 

  • Iverson, R.M., 2000. landslide triggering by rain infiltration. Water Resource Research, 36(7):1897–1910. [doi:10.1029/2000WR900090]

    Article  Google Scholar 

  • Iverson, R.M., Reid, M.E., LaHusen, R.G., 1997. Debris-flow mobilization from landslides. Annual Review of Earth and Planetary Sciences, 25(1):85–138. [doi:10.1146/annurev.earth.25.1.85]

    Article  Google Scholar 

  • Kawagoe, S., Kazama, S., Sarukkalige, P.R., 2010. Probabilistic modelling of rainfall induced landslide hazard assessment. Hydrology and Earth System Sciences Discussions, 7(1):725–766. [doi:10.5194/hessd-7-725-2010]

    Article  Google Scholar 

  • Lee, L.M., Gofar, N., Rahardjo, H., 2009. A simple model for preliminary evaluation of rainfall-induced slope instability. Engineering Geology, 108(3–4):272–285. [doi:10.1016/j.enggeo.2009.06.011]

    Article  Google Scholar 

  • Loague, K., VanderKwaak, J.E., 2002. Simulating hydrological response for the R-5 catchment: comparison of two models and the impact of the roads. Hydrological Processes, 16(5):1015–1032. [doi: 10.1002/hyp.316]

    Article  Google Scholar 

  • Loague, K., Heppner, C.S., Abrams, R.H., Carr, A.E., VanderKwaak, J.E., Ebel, B.A., 2004. Further testing of the Integrated Hydrology Model (InHM): event-based simulations for a small rangeland catchment located near Chickasha, Oklahoma. Hydrological Processes, 19(7): 1373–1398. [doi:10.1002/hyp.5566]

    Article  Google Scholar 

  • Milledge, D.G., Griffiths, D.V., Lane, S.N., Warburton, J., 2012. Limits on the validity of infinite length assumptions for modelling shallow landslides. Earth Surface Processes, and Landforms, 37(11):1158–1166. [doi:10.1002/esp.3235]

    Article  Google Scholar 

  • Minder, J.R., Roe, G.H., Montgomery, D.R., 2009. Spatial patterns of rainfall and shallow landslide susceptibility. Water Resource Research, 45(4):W04419. [doi:10.1029/2008WR007027]

    Article  Google Scholar 

  • Mirus, B.B., Loague, K., VanderKwaak, J.E., Kampf, S.K., Burges, S.J., 2009. A hypothetical reality of Tarrawarralike hydrologic response. Hydrological Processes, 23(7): 1093–1103. [doi:10.1002/hyp.7241]

    Article  Google Scholar 

  • Montgomery, D.R., 1991. Channel Initiation and Landscape Evolution. PhD Thesis, University of California, Berkeley.

    Google Scholar 

  • Montgomery, D.R., Dietrich, W.E., 1994. A physically based model for the topographic control on shallow landsliding. Water Resource Research, 30(4):1153–1171. [doi:10.1029/93WR02979]

    Article  Google Scholar 

  • Montgomery, D.R., Schmidt, K.M., Greenberg, H.M., Dietrich, W.E., 2000. Forest clearing and regional landsliding. Geology, 28(4):311–314. [doi:10.1130/0091-7613(2000)28〈311:FCARL〉2.0.CO;2]

    Article  Google Scholar 

  • Montgomery, D.R., Schmidt, K.M., Dietrich, W.E., MckKean, J., 2009. Instrumental record of debris flow initiation during natural rainfall: Implications for modeling slope. Journal of Geophysical Research, 114(f1):F01031. [doi:10.1029/2008JF001078]

    Article  Google Scholar 

  • Ran, Q., 2006. Regional Scale Landscape Evolution: Physics-Based Simulation of Hydrologically-Driven Surface Erosion. PhD Thesis, Stanford University, USA.

    Google Scholar 

  • Ran, Q., Heppner, C.S., VanderKwaak, J.E., Loague, K., 2007. Further testing of the integrated hydrology model (InHM): multiple-species sediment transport. Hydrological Processes, 21(11):1522–1531. [doi:10.1002/hyp.6642]

    Article  Google Scholar 

  • Ran, Q., Loague, K., VanderKwaak, J.E., 2012. Hydrologicresponse-driven sediment transport at a regional scale, process-based simulation. Hydrological Processes, 26(2):159–167. [doi:10.1002/hyp.8122]

    Article  Google Scholar 

  • Renwick, W., 1982. Landslide morphology and processes on Santa Cruz Island, California. Geografiska Annaler. Series A, Physical Geography, 64(3/4):149–159.

    Article  Google Scholar 

  • Roering, J.R., Schmidt, K.M., Stock, J.D., Dietrich, W.E., Montgomery, D.R., 2003. Shallow landsliding, root reinforcement, and the spatial distribution of trees in the Oregon Coast Range. Canadian Geotechnical Journal, 40(2):237–253. [doi:10.1139/T02-113]

    Article  Google Scholar 

  • Rosso, R., Rulli, M.C., Vannucchi, G., 2006. A physically based model for the hydrologic control on shallow landsliding. Water Resource Research, 42(6):W06410. [doi:10.1029/2005WR004369]

    Article  Google Scholar 

  • Schmidt, K.M., Roering, J.R., Stock, J.D., Dietrich, W.E., Montgomery, D.R., Schaub, T., 2001. The variability of root cohesion as an influence on shallow landslide susceptibility in the Oregon Coast Range. Canadian Geotechnical Journal, 38(5):995–1024. [doi:10.1139/cgj-38-5-995]

    Article  Google Scholar 

  • Schroeder, W.L., Alto, J.V., 1983. Soil properties for slope stability analysis; Oregon and Washington Coastal Mountains. Forest Science, 29(4):823–833.

    Google Scholar 

  • Torres, R., Dietrich, W.E., Montgomery, D.R., Anderson, S.P., Loague, K., 1998. Unsaturated zone processes and the hydrologic response of a steep, unchanneled catchment. Water Resources Research, 34(8):1865–1879. [doi:10.1029/98wr01140]

    Article  Google Scholar 

  • Tsai, T.L., Yang, J.C., 2006. Modeling of rainfall-triggered shallow landslide. Environmental Geology, 50(4):525–534. [doi:10.1007/s00254-006-0229-x]

    Article  Google Scholar 

  • Tsai, T.L., Chen, H.E., Yang, J.C., 2008. Numerical modeling of rainstorm-induced shallow landslides in saturated and unsaturated soils. Environmental Geology, 55(6):1269–1277. [doi:10.1007/s00254-007-1075-1].

    Article  Google Scholar 

  • VanderKwaak, J.E., 1999. Numerical Simulation of Flow and Chemical Transport in Integrated Surface-Subsurface Hydrologic Systems. PhD Thesis, University of Waterloo.

  • VanderKwaak, J.E., Loague, K., 2001. Hydrologic-response simulations for the R-5 catchment with a comprehensive physics-based model. Water Resources Research, 37(4):999–1013. [doi:10.1029/2000WR900272]

    Article  Google Scholar 

  • van Genuchten, M.T., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44(5):892–898. [doi:10.2136/sssaj1980.03615995004400050002x]

    Article  Google Scholar 

  • Yee, C., Harr, R., 1977. Influence of soil aggregation on slope stability in the Oregon Coast Ranges. Environmental Geology, 1(6):367–377. [doi:10.1007/BF02380505]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-guo He.

Additional information

Project supported by the National Basic Research Program (973) of China (No. 2011CB409901-01), and the Foundation of Science and Technology Department of Zhejiang Province (No. 2009C33117), China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ran, Qh., Su, Dy., Qian, Q. et al. Physically-based approach to analyze rainfall-triggered landslide using hydraulic gradient as slide direction. J. Zhejiang Univ. Sci. A 13, 943–957 (2012). https://doi.org/10.1631/jzus.A1200054

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A1200054

Key words

CLC number

Navigation