Skip to main content
Log in

Studies of ultrasonic dehydration efficiency

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

The aim of this investigation was to define the effectiveness of non-contact drying using ultrasonic vibrations. Disk radiators were used for carrying out experiments, and a special drying chamber was designed to provide resonant amplification of ultrasonic vibrations (from 130 to 150 dB). Drying of ginseng and other vegetables demonstrated that the application of ultrasonic vibrations reduced power inputs by 20% in comparison with convective drying. It also led to a decrease of 6% in final moisture content, if the duration of drying was constant. The level of intensification of ultrasonic drying was high (up to 50 g for 1 kg of drying material), which helped to lower the temperature of the drying agent and improve the quality of the dried products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • de la Fuente, S., Riera, E., Gallego-Juarez, J.A., 2004. Effect of Power Ultrasound on Mass Transfer in Food Processing. 18th International Congress on Acoustics, Kyoto, Japan.

  • de la Fuente, S., Riera, E., Acosta-Aparicio, V.M., Blanco, A., Gallego-Juarez, J.A., 2006. Food drying process by power ultrasound. Ultrasonics, 44(S1):e523–e527. [doi: 10.1016/j.ultras.2006.05.181]

    Google Scholar 

  • Gallego-Juarez, J.A., Riera, E., de la Fuente-Blanco, S., Rodriguez-Corral, G., Acosta-Aparicio, V.M., Blanco, A., 2007. Application of high-power ultrasound for dehydration of vegetables: processes and devices. Drying Technology, 25(11):1893–1901. [doi:10.1080/073739307 01677371]

    Article  Google Scholar 

  • Glaznev, V.N., 1997. The Device for Drying of Capillary-Porous Free-Flowing Materials. Patent of Russian Federation, No. 2095707 (in Russian).

  • Khmelev, V.N., Genne, D.V., Bahirev, A.A., Savin, I.I., 2006. The Meter of the Level High-Intensity Ultrasonic Pressure. International Workshops and Tutorials on Electron Devices and Materials, Novosibirsk, NSTU, p.232–233. [doi:10.1109/SIBEDM.2006.230970]

  • Khmelev, V.N., Levin, S.V., Tsyganok, S.N., Lebedev, A.N., 2007a. High Power Ultrasonic Oscillatory Systems. International Workshops and Tutorials on Electron Devices and Materials, Novosibirsk, NSTU, p.293–298.

  • Khmelev, V.N., Leonov, G.V., Shalunov A.V., Tsyganok, S.N., Barsukov, R.V., 2007b. Ultrasonic Multifunctional and Specialized Equipment for Intensification of Technological Processes in Industry. Altai State Technical University Press, Barnaul, Russia (in Russian).

    Google Scholar 

  • Khmelev, V.N., Choo, K.M., Shalunov, A.V., Lee, H.J., Lebedev, A.N., Khmelev, M.V., 2008. Compact Ultrasonic Dryer for Capillary-Porous and Loose Materials. International Workshops and Tutorials on Electron Devices and Materials, Novosibirsk, NSTU, p.295–299. [doi:10. 1109/SIBEDM.2008.4585910]

  • Khmelev, V.N., Choo, K.M., Shalunov, A.V., Lebedev, A.N., Barsukov, R.V., Tsyganok, S.N., Shalunova, K.V., 2009a. Compact Ultrasonic Drier. International Conference and Seminar on Micro/Nanotechnologies and Electron Devices, Novosibirsk, NSTU, p.277–282. [doi:10. 1109/EDM.2009.5173989]

  • Khmelev, V.N., Shalunov A.V., Barsukov R.V., Tsyganok, S.N., Lebedev, A.N., 2009b. Device for Ultrasonic Dryer. Patent of Russian Federation, No. 2367862 (in Russian).

  • Khmelev, V.N., Tsyganok, S.N., Khmelev, S.S., Shalunov, A.V., Lebedev, A.N., Galahov, A.N., Shalunova, K.V., 2009c. Multifrequency Ultrasonic Transducer with Stepped-Plate Disk. International Conference and Seminar on Micro/Nanotechnologies and Electron Devices, Novosibirsk, NSTU, p.250–253. [doi:10.1109/EDM.2009. 5173982]

  • Lebedev, A.N., Shalunov, A.V., Khmelev, S.S., Kuchin, N.V., Shalunova, A.V., 2008. Ultrasonic Oscillating System for Radiators of Gas Media. International Workshops and Tutorials on Electron Devices and Materials, Novosibirsk, NSTU. [doi:10.1109/SIBEDM.2008.4585904]

  • Riera-Franco de Sarabia, E., Gallego-Juarez, J.A., Rodríguez-Corral, G., Acosta-Aparicio, V.M., Andrés-Gallegos, E., 2007. Application of High-Power Ultrasound for Drying Vegetables. 19th International Congress on Acoustic, Madrid, Spain.

  • Rozenberg, L.D., 1973. Physical Principles of Ultrasonic Technology. Plenum Press, USA.

    Book  Google Scholar 

  • Shalunov, A.V., Khmelev, V.N., Shalunova, A.V., 2009. Experimental Research of Efficiency Drying by Ultrasonic Vibrations High Intensity. All-Russian Scientific Conference on the Modern Problems of Tecnical Chemistry, Kazan, Russia, p.385–393 (in Russian).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir N. Khmelev.

Additional information

Project (No. P2518) supported by the Scientific and Research and Educational Staff of Innovative, Russia

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khmelev, V.N., Shalunov, A.V., Barsukov, R.V. et al. Studies of ultrasonic dehydration efficiency. J. Zhejiang Univ. Sci. A 12, 247–254 (2011). https://doi.org/10.1631/jzus.A1000155

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A1000155

Key words

CLC number

Navigation