Skip to main content
Log in

Aluminium tolerance in barley (Hordeum vulgare L.): Physiological mechanisms, genetics and screening methods

  • Review
  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

Aluminium (Al) toxicity is one of the major limiting factors for barley production on acid soils. It inhibits root cell division and elongation, thus reducing water and nutrient uptake, consequently resulting in poor plant growth and yield. Plants tolerate Al either through external resistance mechanisms, by which Al is excluded from plant tissues or internal tolerance mechanisms, conferring the ability of plants to tolerate Al ion in the plant symplasm where Al that has permeated the plasmalemma is sequestered or converted into an innocuous form. Barley is considered to be most sensitive to Al toxicity among cereal species. Al tolerance in barley has been assessed by several methods, such as nutrient solution culture, soil bioassay and field screening. Genetic and molecular mapping research has shown that Al tolerance in barley is controlled by a single locus which is located on chromosome 4H. Molecular markers linked with Al tolerance loci have been identified and validated in a range of diverse populations. This paper reviews the (1) screening methods for evaluating Al tolerance, (2) genetics and (3) mechanisms underlying Al tolerance in barley.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aitken, R.L., Moody, P.W., Compton, B.L., 1990. A simple bioassay for the diagnosis of aluminium toxicity in soils. Commun. Soil. Sci. Plant Anal., 21:511–529.

    CAS  Google Scholar 

  • Alam, S.M., 1981. Influence of aluminium on plant growth and mineral nutrition of barley. Commun. Soil Sci. Plant Anal., 12:121–138.

    CAS  Google Scholar 

  • Alam, S.M., Adams, W.A., 1980. Effects of aluminium upon the growth and nutrition composition of oats. Pak. J. Sci. Res., 23:130–135.

    CAS  Google Scholar 

  • Aniol, A., 1995. Physiological aspects of aluminium tolerance associated with the long arm of chromosome 2D of the wheat (Triticum aestivum L.) genome. Theor. Appl. Genet., 91:510–516.

    CAS  Google Scholar 

  • Aniol, A., 1997. The Aluminium Tolerance in Wheat. In: Ruzgas, V., Lemezis, E., Apanaviciene, M., Basiulis, A., Bilis, J. (Eds.), Proceedings of the International Conference: Plant Breeding: Theories, Achievements and Problems. Kedainiai, Lithuania, p.4–22.

    Google Scholar 

  • Aniol, A., 2004. Chromosomal location of aluminium tolerance genes in rye. Plant Breeding, 123(2):132–136. [doi:10.1046/j.1439-0523.2003.00958.x]

    Article  CAS  Google Scholar 

  • Aniol, A., Gustafson, J.P., 1984. Chromosome location of genes controlling aluminium tolerance in wheat, rye and triticate. Can. J. Genet. Cytol., 26:701–705.

    Google Scholar 

  • Arumuganathan, K., Earle, E.D., 1991. Nuclear DNA content of some important plant species. Plant Mol. Bio. Rep., 9:208–219.

    Article  CAS  Google Scholar 

  • Bache, B.W., Ross, J., 1991. Effect of phosphorus and aluminum in the response of spring barley to soil acidity. J. Agric. Sci., 117:299–305.

    Article  CAS  Google Scholar 

  • Ball, S., Mulla, T., Konzak, C.F., 1993. Spatial heterogeneity affects variety trial interpretation. Crop Sci., 33:931–935.

    Article  Google Scholar 

  • Becker, J., Heun, M., 1995. Barley microsatellite: allele variation and mapping. Plant Mol. Biol., 27(4):835–845. [doi:10.1007/BF00020238]

    Article  PubMed  CAS  Google Scholar 

  • Bennet, R.J., Breen, C.M., Fey, M.V., 1985. The primary site of aluminium injury in the root of Zea mays L. South African J. Plant Soil, 2:8–17.

    CAS  Google Scholar 

  • Bergmann, W., 1992. Nutritional Disorders of Plants: Development, Visual and Analytical Diagnosis. Gustav Fisher Verlag, Jena, Germany.

    Google Scholar 

  • Blamey, F.C.P., Dowling, A.J., 1995. Antagonism between aluminium and calcium for sorption by calcium pectate. Plant Soil, 171(1):137–140. [doi:10.1007/BF00009576]

    Article  CAS  Google Scholar 

  • Blamey, F.C.P., Edmeades, D.C., Wheeler, D.M., 1990. Role of root cation-exchange capacity in differential aluminium tolerance of lotus species. J. Plant Nutr., 13:729–744.

    CAS  Google Scholar 

  • Blamey, F.C.P., Asher, C.J., Edwards, D.G., Kerven, G.L., 1993. In vitro evidence of aluminium effects on solution movement through root cell walls. J. Plant Nutr., 16:555–562.

    CAS  Google Scholar 

  • Bona, L., Wright, R.J., Baligar, V.C., Matuz, J., 1993. Screening wheat and other small grains for acid soil tolerance. Landscape and Urban Planning, 27(2–4):175–178. [doi:10.1016/0169-2046(93)90046-G]

    Article  Google Scholar 

  • Bona, L., Wright, R.J., Carver, B.F., 1998. A proposed scale for quantifying aluminium tolerance levels in wheat and barley detected by hematoxylin staining. Cereal Res. Commun., 26(1):97–99.

    CAS  Google Scholar 

  • Borie, B.F., Stange, J.B., Morales, L.A., Pino, B.M., 1994. Effect of aluminium and acidity on root growth in barley (Hordeum vulgare L.) and oats (Avena sativa L.). Agricultura Tecnica (Santiago), 54:224–230.

    Google Scholar 

  • Brady, D.J., Edwards, D.G., Asher, C.J., Blamey, F.C.P., 1993. Calcium amelioration of aluminium toxicity effects on root hair development in soybean (Glycin max L.) Merr. New Phytol., 123(3):531–538. [doi:10.1111/j.1469-8137.1993.tb03765.x]

    Article  CAS  Google Scholar 

  • Büschges, R., Hokkricher, K., Panstruga, R., Simmons, G., Wolter, M., Frijters, A., van Dealen, R., van der Lee, T., Diergaarde, P., Groenendijk, J., et al., 1997. The barley Mlo gene: a novel control element of plant pathogen resistance. Cell, 88(5):695–705. [doi:10.1016/S0092-8674(00)81912-1]

    Article  PubMed  Google Scholar 

  • Caldwell, C., 1989. Analysis of aluminium and divalent cation binding to wheat root plasma membrane proteins using terbium phosphorescence. Plant Physiol., 91:233–241.

    PubMed  CAS  Google Scholar 

  • Camargo, C.E.O., 1981. Wheat improvement. I. The heritability of tolerance to aluminium toxicity. Bragantia, 40:33–45.

    Google Scholar 

  • Carpita, N.C., Gibeaut, D.M., 1993. Structural models of primary cell walls in flowering plants: consistency of molecular structure with physical properties of the walls during growth. Plant J., 3(1):1–30. [doi:10.1046/j.1365-313X.1993.00999.x]

    Article  PubMed  CAS  Google Scholar 

  • Carver, B.F., Ownby, J.D., 1995. Acid soil tolerance in wheat. Adv. Agron., 54:117–173.

    CAS  Google Scholar 

  • Carver, B.F., Inskeep, W.P., Wilson, N.P., Westerman, R.L., 1988. Seedling tolerance to aluminium toxicity in hard red winter wheat germplasm. Crop Sci., 28:463–467.

    Article  Google Scholar 

  • Carver, B.F., Whitmore, W.E., Smith, E.L., Bona, L., 1993. Registration of four aluminium-tolerant winter wheat germplasms two susceptible near-isolines. Crop Sci., 33:1113–1114.

    Article  Google Scholar 

  • Clark, R.B., Pier, H.A., Knudsen, D., Maranville, J.W., 1981. Effect of trace element deficiencies and excesses on mineral nutrients in sorghum. J. Plant Nutr., 3:357–374.

    CAS  Google Scholar 

  • Clarkson, D.T., 1966. Effect of aluminium on the uptake and metabolism of phosphorus of barley seedlings. Plant Physiol., 41:165–172.

    PubMed  CAS  Google Scholar 

  • Clarkson, D.T., 1967. Interaction between aluminium and phosphorus on root surface and cell wall materials. Plant Soil, 27(3):347–356. [doi:10.1007/BF01376328]

    Article  CAS  Google Scholar 

  • Cocker, K.M., Evans, D.E., Hodson, M.J., 1998. The amelioration of aluminium toxicity by silicon in wheat (Triticum aestivum L.): malate exudation as evidence for an in planta mechanism. Planta, 204(3):318–323. [doi:10.1007/s004250050262]

    Article  CAS  Google Scholar 

  • Cruz-Ortega, R., Cushman, J.C., Ownby, J.D., 1997. cDNA clones encoding 1,3-β-glucanase and a fimbrin-like cytoskeletal protein are induced by Al toxicity in wheat roots. Plant Physiol., 114(4):1453–1460. [doi:10.1104/pp.114.4.1453]

    Article  PubMed  CAS  Google Scholar 

  • de la Fuente, J.M., Ramírez-Rodríguez, V., Cabrera-Ponce, J.L., Herrera-Estrella, L., 1997. Aluminum tolerance in transgenic plants by alteration of citrate synthesis. Science, 276(5318):1566–1568. [doi:10.1126/science.276.5318.1566]

    Article  PubMed  Google Scholar 

  • de Lima, M.L., Copeland, L., 1994. Changes in the ultrastructure of the root tip of wheat following exposure to aluminium. Aust. J. Plant Physiol., 21:85–94.

    Article  Google Scholar 

  • Delhaize, E., Ryan, P.R., 1995. Aluminium toxicity and tolerance in plants. Plant Physiol., 107:315–321.

    PubMed  CAS  Google Scholar 

  • Delhaize, E., Craig, S., Beaton, C.D., Bennet, R.J., Jagadish, V.C., Randall, P.J., 1993. Aluminum tolerance in wheat (Triticum aestivum L.). I. Uptake and distribution of aluminum in root apices. Plant Physiol., 103:685–693.

    PubMed  CAS  Google Scholar 

  • Delhaize, E., Hebb, D.M., Ryan, P.R., 2001. Expression of a Pseudomonas aeruginosa citrate synthase gene in tobacco is not associated with either enhanced citrate accumulation or efflux. Plant Physiol., 125(4):2059–2067. [doi:10.1104/pp.125.4.2059]

    Article  PubMed  CAS  Google Scholar 

  • Delhaize, E., Ryan, P.R., Hebb, D.M., Yamamoto, Y., Sasaki, T., Matsumoto, H., 2004. Engineering high-level aluminum tolerance in barley with the ALMT1 gene. Proc. Natl. Acad. Sci. USA, 101(42):15249–15254. [doi:10.1073/pnas.0406258101]

    Article  PubMed  CAS  Google Scholar 

  • Duke, J.A., 1982. Plant Germplasm Resources for Breeding of Crops Adapted to Marginal Environments. In: Christiansen, M.N., Lews, C.F. (Eds.), Breeding Plants for Less Favourable Environments. John Wiley and Son, New York, p.339–433.

    Google Scholar 

  • Ezaki, B., Tsgita, S., Matsumoto, H., 1996. Expression of moderately anionic peroxidase is induced by aluminum treatment in tobacco cells: possible involvement of peroxidase isozymes in aluminium ion stress. Physiol. Plant., 96(1):21–28. [doi:10.1111/j.1399-3054.1996.tb00178.x]

    Article  CAS  Google Scholar 

  • Ezaki, B., Gardner, R.C., Ezaki, Y., Matsumoto, H., 2000. Expression of aluminum-induced genes in transgenic Arabidopsis plants can ameliorate aluminum stress and/or oxidative stress. Plant Physiol., 122(3):657–665. [doi:10.1104/pp.122.3.657]

    Article  PubMed  CAS  Google Scholar 

  • Ezaki, B., Katsuhara, M., Kawamura, M., Matsumoto, H., 2001. Different mechanisim of four aluminum (Al)-resisitance transgenes for Al toxicity in Arabidopsis. Plant Physiol., 127(3):918–927. [doi:10.1104/pp.127.3.918]

    Article  PubMed  CAS  Google Scholar 

  • Fisher, J.A., Scott, B.J., 1987. Response to Selection for Aluminium Tolerance. In: Searle, P.G.E., Davey, B.G. (Eds.), Priorities in Soil/Plant Relations Research for Plant Production. Univ. of Sydney, Australia, p.135–137.

    Google Scholar 

  • Foy, C.D., 1976. General Principles Involved in Screening Plants from Aluminium and Manganese Tolerance. In: Wright, M.J., Ferrari, A.S. (Eds.), Plant Adaptation to Mineral Stress in Problem Soils. Cornel Univ. Press, Ithaca, p.255–267.

    Google Scholar 

  • Foy, C.D., 1983. The physiological of plant adaptation to mineral stress. Iowa State J. Res., 57:355–391.

    CAS  Google Scholar 

  • Foy, C.D., 1984. Physiological Effects of Hydrogen, Aluminium and Manganese Toxicities in Acid Soils. In: Adams, F. (Ed.), Soil Acidity and Liming, 2nd Ed. Soil Sci. Soc. Am., Amer. Soc. Agron., and Crop Sci. Soc. Am., Medison, Wisconsin, p.57–97.

    Google Scholar 

  • Foy, C.D., 1988. Plant adaptation to acid, aluminium-toxic soils. Commun. Soil Sci. Plant Anal., 19:959–987.

    CAS  Google Scholar 

  • Foy, C.D., 1992. Soil Chemical Factors Limiting Plant Root Growth. In: Hatfield, J.L., Stewart, B.A. (Eds.), Advances in Soil Science: Limitation to Plant Root Growth, Vol. 19. Springer-Verlag, New York, p.97–149.

    Google Scholar 

  • Foy, C.D., 1996. Tolerance of barley cultivars to an acid, aluminium-toxic subsoil related to mineral element concentrations in their shoots. J. Plant Nutr., 19:1361–1380.

    CAS  Google Scholar 

  • Foy, C.D., Fleming, A.L., 1982. Aluminium tolerance of two wheat cultivars related to nitrate reductase activities. J. Plant Nutr., 5:1313–1333.

    CAS  Google Scholar 

  • Foy, C.D., Armiger, W.H., Briggle, L.W., Reid, D.A., 1965. Differential aluminum tolerance of wheat and barley varieties in acid soils. Agron. J., 57:413–417.

    Article  CAS  Google Scholar 

  • Foy, C.D., Fleming, A.L., Burns, G.R., Armiger, W.H., 1967. Characterisation of differential aluminium tolerance among varieties of wheat and barley. Soil Sci. Soc. Am. Proc., 31:513–521.

    Article  CAS  Google Scholar 

  • Foy, C.D., Chaney, R.L., White, M.C., 1978. The physiology of metal toxicity in plants. Annu. Rev. Plant Physiol., 29(1):511–566. [doi:10.1146/annurev.pp.29.060178.002455]

    Article  CAS  Google Scholar 

  • Foy, C.D., Scott, B., Fisher, J.A., 1988. Genetic Differences in Plant Tolerance to Manganese Toxicity. In: Graham, R.D., Hannam, R.J., Uren, N.C. (Eds.), Manganese in Soils and Plants. Kluwer Academic Publishers, the Netherlands, p.293–307.

    Google Scholar 

  • Furlani, R.R., Clark, R.B., 1981. Screening sorghum for aluminium tolerance in nutrient solution. Agron. J., 73:587–594.

    Article  CAS  Google Scholar 

  • Gallardo, F., Borie, F., Alvear, L., Baer, E.V., 1999. Evaluation of aluminium tolerance of three barley cultivars by two short-term screening methods and field experiments. Soil Sci. Plant Nutr., 45:713–719.

    CAS  Google Scholar 

  • Gallego, F.J., Calles, B., Benito, C., 1998a. Molecular markers linked to the aluminium tolerance gene Alt1 in rye (Secale cereale L.). Theor. Appl. Genet., 97(7):1104–1109. [doi:10.1007/s001220050997]

    Article  CAS  Google Scholar 

  • Gallego, F.J., Lopez-Solanilla, E., Figueiras, A.M., Benito, C., 1998b. Chromosomal location of PCR fragments as a source of DNA markers linked to aluminium tolerance genes in rye. Theor. Appl. Genet., 96(3–4):426–434. [doi:10.1007/s001220050759]

    Article  CAS  Google Scholar 

  • Garvin, D.F., Carver, B.F., 2003. The Role of the Genotype in Tolerance to Acidity and Aluminum Toxicity. In: Rengel, Z. (Ed.), Handbook of Soil Acidity. Marcel Dekker, New York, p.387–406.

    Google Scholar 

  • Gauthier, F.M., 1953. Tolerance of barley varieties to soil acidity. Cereal Newsl., 3:12.

    Google Scholar 

  • Hamel, F., Breton, C., Houde, M., 1998. Isolation and characterization of wheat aluminium-regulated genes: possible involvement of aluminum as a pathogenesis response elicitor. Planta, 205(4):531–538. [doi:10.1007/s004250050352]

    Article  PubMed  CAS  Google Scholar 

  • Hammond, K.E., Evans, D.E., Hodson, M.J., 1995. Aluminium silicon interactions in barley (Hordeum vulgare L.) seedlings. Plant Soil, 173(1):89–95. [doi:10.1007/BF00155521]

    Article  CAS  Google Scholar 

  • Haug, A., Shi, B., 1991. Biochemical Basis of Aluminium Tolerance in Plant Cells. In: Wright, R.J., Baligar, V.C., Murrmann, R.P. (Eds.), Plant-Soil Interactions at Low pH. Kluwer Academic Publishers, Dordrecht, the Netherlands, p.839–850.

    Google Scholar 

  • Hede, A.R., Skovmand, B., Ribaut, J.M., Gonzalez-de-leon, D., StΦlen, O., 2002. Evaluation of aluminium tolerance in a spring rye collection by hydroponic screening. Plant Breeding, 121(3):241–248. [doi:10.1046/j.1439-0523.2002.00706.x]

    Article  CAS  Google Scholar 

  • Henderson, M., Ownby, J.D., 1991. The role of root cap mucilage secretion in aluminium tolerance in wheat. Curr. Topics Plant Biochem. Physiol., 10:134–141.

    CAS  Google Scholar 

  • Hoekenga, O.A., Vision, T.J., Shaff, J.E., Monforte, A.J., Lee, G.P., Howell, S.H., Kochian, L.V., 2003. Identification and characterization of aluminum tolerance loci in Arabidopsis (Landsberg erecta×Columbia) by quantitative trait locus mapping. A physiologically simple but genetically complex trait. Plant Physiol., 132(2):936–948. [doi:10.1104/pp.103.023085]

    Article  PubMed  CAS  Google Scholar 

  • Hoekenga, O.A., Maron, L.G., Piñeros, M.A., Cançado, G.M., Shaff, J., Kobayashi, Y., Ryan, P.R., Dong, B., Delhaize, E., Sasaki, T., et al., 2006. AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis. Proc. Natl. Acad. Sci. USA, 103(25):9738–9743. [doi:10.1073/pnas.0602868103]

    Article  PubMed  CAS  Google Scholar 

  • Horst, W.J., Wagner, A., Marschner, H., 1982. Mucilage protects root meristems from aluminium injury. Z. Pflanzenphysiol., 105:435–444.

    CAS  Google Scholar 

  • Hossain, M., Zhou, M.X., Mendham, N.J., 2005. A reliable screening system for aluminium tolerance in barley cultivars. Aust. J. Agric. Res., 56(5):475–482. [doi:10.1071/AR04191]

    Article  CAS  Google Scholar 

  • Hu, X.M., Pan, J.W., Chen, H., Zhu, M.Y., 2002. Aluminum-induced ultraweak luminescence changes in root-tip cells of barley. J. Zhejiang Univ. (Agric. Life Sci.), 18:383–386 (in Chinese).

    Google Scholar 

  • IRRI, 1974. International Rice Research Institute Report for 1973. IRRI, Los Banos, Philippines.

    Google Scholar 

  • Ishikawa, S., Wagamatsu, T., Sasaki, R., Manu, P.O., 2000. Comparison of the amount of citric and malic acids in Al media of seven plant species and two cultivars each in five plant species. Soil Sci. Plant Nutr., 46:751–758.

    CAS  Google Scholar 

  • Kamprath, E.J., Foy, C.D., 1985. Lime-fertilizer-plant Interactions in Acid Soils. Fertilizer Technology and Use, p.91–151.

  • Kidd, P.S., Llugany, M., Poschenrieder, C., Gunse, B., Barcelo, J., 2001. The role of root exudates in aluminium resistance and silicon-induced amelioration of aluminium toxicity in three varieties of maize (Zea mays L.). J. Exp. Bot., 52(359):1339–1352. [doi:10.1093/jexbot/52.359.1339]

    Article  PubMed  CAS  Google Scholar 

  • Kinraide, T.B., Arnold, R.C., Baligar, V.C., 1985. A rapid assay for aluminium phytotoxicity at submicromolar concentrations. Physiol. Plant., 65(3):245–250. [doi:10.1111/j.1399-3054.1985.tb02390.x]

    Article  CAS  Google Scholar 

  • Kinraide, T.B., Ryan, P.R., Kochian, L.V., 1992. Interactive effects of Al3+, H+, and other cations on root elongation considered in terms of cell-surface electrical potential. Plant Physiol., 99:1461–1468.

    PubMed  CAS  Google Scholar 

  • Kochian, L.V., 1995. Cellular mechanism of aluminium toxicity and resistance in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol., 46(1):237–260. [doi:10.1146/annurev.pp.46.060195.001321]

    Article  CAS  Google Scholar 

  • Kochian, L.V., Pence, N.S., Letham, D.L.D., Pineros, M.A., Magalhaes, J.V., Hoekenga, O.A., Garvin, D.F., 2002. Mechanisms of metal resistance in plants: aluminum and heavy metals. Plant Soil, 247(1):109–119. [doi:10.1023/A:1021141212073]

    Article  CAS  Google Scholar 

  • Kochian, L.V., Piñeros, M.A., Hoekenga, O.A., 2005. The physiology, genetics and molecular biology of plant aluminum resistance and toxicity. Plant Soil, 274(1–2):175–195. [doi:10.1007/s11104-004-1158-7]

    Article  CAS  Google Scholar 

  • Li, X.F., Ma, J.F., Matsumoto, H., 2000. Pattern of aluminum-induced secretion of organic acids differs between rye and wheat. Plant Physiol., 123(4):1537–1543. [doi:10.1104/pp.123.4.1537]

    Article  PubMed  CAS  Google Scholar 

  • Li, C.D., Lance, R.M.C., Collins, H.M., Tarr, A., Roumeliotis, S., Harasymow, S., Cakir, M., Fox, G.P., Grime, C.R., Broughton, S., et al., 2003. Quantitative trait loci controlling kernel discoloration in barley (Hordeum vulgare L.). Aust. J. Agric. Res., 54(12):1251–1259. [doi:10.1071/AR03002]

    Article  CAS  Google Scholar 

  • Liang, Y.C., Yang, C.G., Shi, H.H., 2001. Effects of silicon on growth and mineral composition of barley grown under toxic levels of aluminum. J. Plant Nutr., 24(2):229–243. [doi:10.1081/PLN-100001384]

    Article  CAS  Google Scholar 

  • Lindberg, S., 1990. Aluminium interaction with K+(86Rb+) and 45Ca+ fluxes in three cultivars of sugar beet (Beta vulgaris). Physiol. Plant., 79(2):275–282. [doi:10.1111/j.1399-3054.1990.tb06742.x]

    Article  CAS  Google Scholar 

  • Lindberg, S., Griffiths, G., 1993. Aluminium effects on AT-Pase activity and lipid composition of plasma membrane of sugar beet roots. J. Exp. Bot., 44(10):1543–1550.

    CAS  Google Scholar 

  • Lisitsyn, E.M., 2000. Intravarietal level of aluminum resistance in cereal crops. J. Plant Nutr., 23:793–804.

    CAS  Google Scholar 

  • Little, R., 1988. Plant soil interactions at low pH: problem solving—the genetic approach. Commun. Soil Sci. Plant Anal., 19:1239–1257.

    CAS  Google Scholar 

  • Loper, M., Brauer, D., Patterson, D., Tu, S.I., 1993. Aluminium inhibition of NADH-linked electron transfer by corn root plasma membrane. J. Plant Nutr., 16:507–514.

    CAS  Google Scholar 

  • Luo, M.C., Dvorak, J., 1996. Molecular mapping of an aluminum tolerance locus on chromosome 4D of Chinese Spring wheat. Euphytica, 91:31–35.

    CAS  Google Scholar 

  • Ma, J.F., Zheng, J.S., Li, X.F., Takeda, K., Matsumoto, H., 1997. A rapid hydroponic screening for aluminium tolerance in barley. Plant Soil, 191(1):133–137. [doi:10.1023/A:1004257711952]

    Article  CAS  Google Scholar 

  • Ma, J.F, Ryan, P.R., Delhaize, E., 2001. Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci., 6(6):273–278. [doi:10.1016/S1360-1385(01)01961-6]

    Article  PubMed  CAS  Google Scholar 

  • Ma, J.F., Shen, R., Zhao, Z., Wissuwa, M., Takeuchi, Y., Ebitani, T., Yano, M., 2002. Response of rice to Al stress and identification of quantitative trait loci for Al tolerance. Plant Cell Physiol., 43(6):652–659. [doi:10.1093/pcp/pcf081]

    Article  PubMed  CAS  Google Scholar 

  • Ma, J.F., Nagao, S., Sato, K., Ito, H., Furukawa, J., Tekeda, K., 2004. Molecular mapping of a gene responsible for Al-activated secretion of citrate in barley. J. Exp. Bot., 55(401):1335–1341. [doi:10.1093/jxb/erh152]

    Article  PubMed  CAS  Google Scholar 

  • Maltais, K., Houde, M., 2002. A new biochemical markers for aluminium tolerance in plants. Physiol. Plant., 115(1):81–87. [doi:10.1034/j.1399-3054.2002.1150109.x]

    Article  PubMed  CAS  Google Scholar 

  • Mao, C., Yi, K., Yang, L., Zheng, B., Wu, Y., Liu, F., Wu, P., 2003. Identification of aluminium-regulated genes by cDNA-AFLP in rice (Oryza sativa L.): Al-regulated genes for the metabolism of cell wall components. J. Exp. Bot., 55(394):137–143. [doi:10.1093/jxb/erh030]

    Article  PubMed  CAS  Google Scholar 

  • Matos, M., Camacho, M.V., Pérez-Flores, V., Pernaute, B., Pinto-Carnide, O., Benito, C., 2005. A new aluminum tolerance gene located on rye chromosome arm 7RS. Theor. Appl. Genet., 111:360–369. [doi:10.1007/s00122-005-2029-1]

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto, H., Yamaya, T., 1986. Inhibition of potassium uptake and regulation of membrane-associated Mg2+-ATPase activity of pea roots by aluminium. Soil Sci. Plant Nutr., 32:179–188.

    CAS  Google Scholar 

  • Matsumoto, H., Yamamoto, Y., Kasai, M., 1992. Change of some properties of the plasma membrane-enhanced fraction of barley roots related to aluminium stress: membrane-associated ATPase, aluminium and calcium. Soil Sci. Plant Nutr., 38:411–419.

    CAS  Google Scholar 

  • Maxim, P., Duta, Z., 1996. Aluminium tolerance of barley 1. Efficiency of in vivo procedure in estimation of genotypic differences. Romanian Agric. Res., (5–6):21–28.

  • Miftahudin, G., Scoles, J., Gustafson, J.P., 2002. AFLP markers tightly linked to the aluminum-tolerance gene Alt3 in rye (Secale cereale L.). Theor. Appl. Genet., 104(4):626–631. [doi:10.1007/s00122-001-0782-3]

    Article  CAS  Google Scholar 

  • Milla, M.A.R., Gustafson, J.P., 2001. Genetic and physical characterization of chromosome 4DL in wheat. Genome, 44(5):883–892. [doi:10.1139/gen-44-5-883]

    Article  PubMed  CAS  Google Scholar 

  • Milla, M.A.R., Butler, E., Huete, A.R., Wilson, C.F., Anderson, O., Gustafson, J.P., 2002. Expressed sequence tag-based gene expression analysis under aluminum stress in rye. Plant Physiol., 130(4):1706–1716. [doi:10.1104/pp.009969]

    Article  PubMed  CAS  Google Scholar 

  • Millard, M.M., Foy, C.D., Coradetti, C.A., Reinsel, M.D., 1990. X-ray photoelectron spectroscopy surface analysis of aluminium ion stress in barley roots. Plant Physiol., 93:578–583.

    PubMed  CAS  Google Scholar 

  • Minella, E., Sorrells, M.E., 1992. Aluminium tolerance in barley: genetic relationships among genotypes of diverse origin. Crop Sci., 32:593–598.

    Article  CAS  Google Scholar 

  • Minella, E., Sorrells, M.E., 1997. Inheritance and chromosome location of Alp, a gene controlling aluminium tolerance in ‘Dayton’ barley. Plant Breeding, 116(5):465–469. [doi:10.1111/j.1439-0523.1997.tb01032.x]

    Article  CAS  Google Scholar 

  • Miyasaka, S.C., Buta, J.G., Howell, R.K., Foy, C.D., 1991. Mechanism of aluminium tolerance in snapbeans: root exudation of citric acid. Plant Physiol., 96:737–743.

    PubMed  CAS  Google Scholar 

  • Moore, D.P., Kronstad, W.E., Metzger, R.J., 1977. Screening Wheat for Aluminium Tolerance. In: Wright, M.J., Ferrari, S.A. (Eds.), Plant Adaptation to Mineral Stress in Problem Soils. Special Publ., Cornell Univ. Agr. Exp. Sta., Ithaca, New York, p.287–295.

    Google Scholar 

  • Mugwira, L.M., Elgawhary, S.M., Patel, K.I., 1976. Differential tolerances of Triticale, wheat, rye and barley to aluminium in nutrient solution. Agron. J., 68:782–787.

    Article  CAS  Google Scholar 

  • Nguyen, V.T., Burrow, M.D., Nguyen, H.T., Le, B.T., Le, T.D., Paterson, A.H., 2001. Molecular mapping of genes conferring aluminium tolerance in rice (Oryza sativa L.). Theor. Appl. Genet., 102(6–7):1002–1010. [doi:10.1007/s001220000472]

    Article  CAS  Google Scholar 

  • Nguyen, V.T., Nguyen, B.D., Sarkarung, S., Martinez, C., Paterson, A.H., Nguyen, H.T., 2002. Mapping of genes controlling aluminum tolerance in rice: comparison of different genetic backgrounds. Mol. Genet. Genomics, 267(6):772–780. [doi:10.1007/s00438-002-0686-1]

    Article  PubMed  CAS  Google Scholar 

  • Nguyen, B.D., Brar, D.S., Bui, B.C., Nguyen, T.V., Pham, L.N., Nguyen, H.T., 2003. Identification and mapping of QTL for aluminum tolerance introgressed from the new source, Oryza rufipogon Griff., to indica rice (Oryza sativa L.). Theor. Appl. Genet., 106:583–593.

    PubMed  CAS  Google Scholar 

  • Ninamango-Cárdenas, F.E., Guimaraes, C.T., Martins, P.R., Parentoni, S.N., Carneiro, N.P., Lopes, M.A., Moro, J.R., Paiva, E., 2003. Mapping QTLs for aluminum tolerance in maize. Euphytica, 130(2):223–232. [doi:10.1023/A:1022867416513]

    Article  Google Scholar 

  • Ohki, K., 1986. Photosynthesis, chlorophyll and transpiration responses in aluminium stressed wheat and sorghum. Crop Sci., 26:572–575.

    Article  CAS  Google Scholar 

  • Oram, R.N., 1983. Breeding Barley Tolerant to High Soil Acidity and Waterlogging. In: Driscoll, C.J. (Ed.), Proc. Aust. Plant Breed. Conf. Adelaide, South Australia, p.71–73.

  • Ownby, J.D., 1993. Mechanisms of reaction of hematoxylin with aluminium-treated wheat roots. Physiol. Plant., 87(3):371–380. [doi: 10.1111/j.1399-3054.1993.tb01744.x]

    Article  CAS  Google Scholar 

  • Parker, D.R., 1995. Root growth analysis: an underutilization approach to understanding aluminium rhizotoxicity. Plant Soil, 171(1):151–157. [doi:10.1007/BF00009579]

    Article  CAS  Google Scholar 

  • Polle, E., Konzak, C.F., 1985. A single scale for determining Al tolerance levels in cereals. Agron. Abstr., p.67.

  • Polle, E., Konzak, C.F., Kittrick, A.J., 1978. Visual detection of aluminium tolerance levels in wheat by hematoxylin staining of seedling roots. Crop Sci., 18:823–827.

    Article  CAS  Google Scholar 

  • Puthota, V., Cruz-Ortega, R., Johnson, J., Ownby, J., 1991. An Ultrastructural Study of the Inhibition of Mucilage Secretion in Wheat Root Cap by Aluminium. In: Wright, R.J., Baligar, V.C., Murrmann, R.P. (Eds.), Plant-Soil Interactions at Low Soil pH. Kluwer Academic Publishers, Dordrecht, the Netherlands, p.779–787.

    Google Scholar 

  • Raman, H., Moroni, S., Raman, R., Karakousis, A., Read, B., Sato, K., Scott, B.J., 2001. A Genomic Region Associated with Aluminium Tolerance in Barley. Proceedings of the 10th Australian Barley Technical Symposium. http://www.regional.org.au/au/abts/2001/t3/raman.htm

  • Raman, H., Moroni, J.H., Saito, K., Read, B.J., Scott, B.J., 2002. Identification of AFLP and microsatellite markers linked with an aluminium tolerance gene in barley (Hordeum vulgare L.). Theor. Appl. Genet., 105(2–3):458–464. [doi:10.1007/s00122-002-0934-0]

    PubMed  CAS  Google Scholar 

  • Raman, H., Karakousis, A., Moroni, J.S., Raman, R., Read, B., Garvin, D.F., Kochian, L.V., Sorrells, M.E., 2003. Development and allele diversity of microsatellite markers linked to the aluminium tolerance gene Alp in barley. Aust. J. Agric. Res., 54(12):1315–1321. [doi:10.1071/AR02226]

    Article  CAS  Google Scholar 

  • Raman, H., Wang, J.P., Read, B., Zhou, M.X., Venkataganappa, S., Moroni, J.S., O’Bree, B., Mendham, N., 2005a. Molecular Mapping of Resistance to Aluminium Toxicity in Barley. Proceedings of Plant and Animal Genome XIII Conference. San Diego, USA, p.154. http://www.intl-ag.org/13/abstracts/PAG13_P328.htm

  • Raman, H., Zhang, K., Cakir, M., Appels, R., Moroni, J.S., Maron, L.G., Kochian, L.V., Raman, R., Imtiaz, M., Drake-Brockman, F., et al., 2005b. Molecular characterization and mapping of ALMT1, the aluminium-tolerance gene of bread wheat (Triticum aestivum L.). Genome, 48:781–791.

    PubMed  CAS  Google Scholar 

  • Read, B.J., Scott, B.J., 1983. Tolerance of Barley to Aluminium and Manganese. Proceedings of the 8th Australasian Plant Breeding Conference. Adelaide, p.333–334.

  • Read, B.J., Oram, R.N., 1995. Hordeum vulgare (Barley) cv. Brindabella. Aust. J. Exp. Agric., 35(3):425. [doi:10.1071/EA9950425]

    Article  Google Scholar 

  • Read, B., Raman, H., McMichael, G., Chalmers, K., Ablett, G., Platz, G.J., Raman, R., Genger, R., Boyd, R., Park, R.F., et al., 2003. Mapping and QTL analysis of the barley population Sloop/Halcyon. Aust. J. Agric. Res., 54(12):1145–1153. [doi:10.1071/AR03037]

    Article  CAS  Google Scholar 

  • Reid, D.A., 1970. Genetic Control of Reaction to Aluminum in Winter Barley. In: Nilan, R.A. (Ed.), Proceedings of the 2nd International Barley Genetics Symposium. Washington State University Press, Pullman, WA, p.409–413.

    Google Scholar 

  • Reid, D.A., Jones, G.D., Armiger, W.H., Foy, C.D., Hoch, E.J., Sterling, T.M., 1969. Differential aluminium tolerance of winter barley varieties and selections in associated greenhouse and field experiment. Agron. J., 61:218–222.

    Article  Google Scholar 

  • Reid, D.A., Fleming, A.I., Foy, C.D., 1971. A method for determining aluminium response of barley in nutrient solution in comparison to response in Al-toxic soil. Agron. J., 63:600–603.

    Article  CAS  Google Scholar 

  • Rengel, Z., Elliott, D.C., 1992. Mechanism of aluminium inhibitionof net 45Ca2+ uptake by Amaranthus protoplasts. Plant Physiol., 98:632–638.

    PubMed  CAS  Google Scholar 

  • Richards, K.D., Schott, E.J., Sharma, Y.K., Davis, K.R., Gardner, R.C., 1998. Aluminum induces oxidative stress genes in Arabidopsis thaliana. Plant Physiol., 116(1):409–418. [doi:10.1104/pp.116.1.409]

    Article  PubMed  CAS  Google Scholar 

  • Riede, C.R., Anderson, J.A., 1996. Linkage of RFLP markers to an aluminum tolerance gene in wheat. Crop Sci., 36:905–909.

    Article  Google Scholar 

  • Rincon, M., Gonzales, R., 1992. Aluminium partitioning in intact roots of aluminium-tolerant and aluminium-sensitive wheat (Triticum aestivum L.) cultivars. Plant Physiol., 99:1021–1028.

    PubMed  CAS  Google Scholar 

  • Ruiz-Torres, N.A., Carver, B.F., 1992. Genetic expression of aluminium tolerance in hard red winter wheat. Cereal Res. Com., 20:233–240.

    CAS  Google Scholar 

  • Ryan, P.R., Delhaize, E., Randall, P.J., 1995. Characterisation of Al-stimulated efflux of malate from the apices of Al-tolerant wheat roots. Planta, 196(1):103–111. [doi:10.1007/BF00193223]

    Article  CAS  Google Scholar 

  • Ryan, P.R., Raman, H., Zhang, K., Moroni, J.S., Appels, R., Sasaki, T., Matsumoto, H., Hebb, D., Delhaize, E., 2004. Molecular Mapping of Wheat ALMT1 Gene for Aluminium Tolerance and Its Function in Heterologous Expression Systems. VI. International Symposium on Plant-Soil Interaction at Low pH. Sendai, Japan.

  • Sasaki, T., Ezaki, B., Matsumoto, H., 2002. A gene encoding multidrug resistance (MDR)-like protein is induced by aluminum and inhibitors of calcium flux in wheat. Plant Cell Physiol., 43(2):177–185. [doi:10.1093/pcp/pcf025]

    Article  PubMed  CAS  Google Scholar 

  • Sasaki, T.Y.Y., Ezaki, B., Katsuhara, M., Ahn, S.J., Ryan, P.R., Delhaize, E., Matsumoto, H., 2004. A wheat gene encoding an aluminium-activated malate transporter. Plant J., 37(5):645–653. [doi:10.1111/j.1365-313X.2003.01991.x]

    Article  PubMed  CAS  Google Scholar 

  • Scott, B.J., Fisher, J.A., 1989. Selection of Genotypes Tolerant of Aluminium and Manganese. In: Robson, A.D. (Ed.), Soil Acidity and Plant Growth. Academic Press, Australia, p.167–203.

    Google Scholar 

  • Shuman, L.M., Wilson, D.O., Duncan, R.R., 1993. Screening wheat and sorghum cultivars for aluminium sensitivity at low aluminium levels. J. Plant Nutr., 16:2383–2395.

    CAS  Google Scholar 

  • Sibov, S.T., Gaspar, M., Silva, M.J., Ottoboni, L.M.M., Arruda, P., Souza, A.P., 1999. Two genes control aluminum tolerance in maize: genetic and molecular mapping analyses. Genome, 42(3):475–482. [doi:10.1139/gen-42-3-475]

    Article  CAS  Google Scholar 

  • Simons, G., van der Lee, T., Diergaarde, P., van Dealen, R., Groenendijk, J., Frijters, A., Büschges, R., Hollricher, K., Töpsch, S., Schulze-Lefert, P., et al., 1997. AFLP-based fine mapping of the Mlo gene to a 30-kb DNA segment of the barley genome. Genomics, 44(1):61–70. [doi:10.1006/geno.1997.4844]

    Article  PubMed  CAS  Google Scholar 

  • Snowden, K.C., Richards, K.D., Gardner, R.C., 1995. Aluminum-induced genes: induction by toxic metals, low calcium, and wounding and pattern of expression in root tips. Plant Physiol., 107:341–348.

    PubMed  CAS  Google Scholar 

  • Stange, M.B., Beratto, M.E., Montenegro, B.A., Peyrelongue, C.A., Borie, B.F., 1995. Effect of nitrogen source on growth of barley on a soil with a high aluminium content. Agricultura Tecnica (Santiago), 55:118–126.

    Google Scholar 

  • Stølen, O., Anderson, S., 1978. Inheritance of tolerance to low soil pH in barley. Heriditas, 88:101–105.

    Article  Google Scholar 

  • Takagi, H., Namai, H., Murakami, K., 1981. Evaluation of the hematoxylin staining method for detecting wheat tolerance to aluminium. Japan J. Breed, 31:152–160.

    Google Scholar 

  • Tamas, L., Budikova, S., Simonovicova, M., Huttova, J., Siroka, B., Mistrik, I., 2006. Rapid and simple method for Al-toxicity analysis in emerging barley roots during germination. Biologia Plantarum, 50(1):87–93. [doi:10.1007/s10535-005-0079-5]

    Article  CAS  Google Scholar 

  • Tang, Y., Sorrells, M.E., Kochian, L.V., Gravan, D.F., 2000. Identification of RFLP markers linked to the barley aluminium tolerance gene Alp. Crop Sci., 40:778–782.

    Article  CAS  Google Scholar 

  • Taylor, G.J., 1988. The Physiology of Al Tolerance. In: Sigel, H., Sigel, A. (Eds.), Metal Ions in Biological Systems: Aluminium and Its Role in Biology. Marcel Dekker, NY, p.165–199.

    Google Scholar 

  • Taylor, G.J., 1991. Current views of the aluminium stress response: the physiological basis of tolerance. Curr. Top. Plant Biochem. Physiol., 10:57–93.

    CAS  Google Scholar 

  • Taylor, G.J., 1995. Overcoming barriers to understanding the cellular basis of aluminium resistance. Plant Soil, 171(1):89–103. [doi:10.1007/BF00009570]

    Article  CAS  Google Scholar 

  • von Uexküll, H.R., Mutert, E., 1995. Global extent, development and economic impact of acid soils. Plant Soil, 171(1):1–15. [doi:10.1007/BF00009558]

    Article  Google Scholar 

  • Wagatsuma, T., Yamasaku, K., 1985. Relationship between differential aluminium tolerance and plant induced pH change of medium among barley cultivars. Soil Sci. Plant Nutr., 31:521–535.

    CAS  Google Scholar 

  • Wagatsuma, T., Ishikawa, S., Obata, H., Tawaraya, K., Katohda, S., 1995. Plasma membrane of younger and outer cells is the primary specific site for aluminium toxicity in roots. Plant Soil, 171(1):105–112. [doi:10.1007/BF00009571]

    Article  CAS  Google Scholar 

  • Wang, J.P., Raman, H., Read, B., Zhou, M.X., Mendham, N.J., Venkatanagappa, S., 2006. Validation of an Alt locus for aluminium tolerance scored with eriochrome cyanine R staining method in barley cultivar Honen (Hordeum vulgare L.). Aust. J. Agric. Res., 57(1):113–118. [doi:10.1071/AR05202]

    Article  CAS  Google Scholar 

  • Watt, D.A., 2003. Aluminium-responsive genes in sugarcane: identification and analysis of expression under oxidative stress. J. Exp. Bot., 54(385):1163–1174. [doi:10.1093/jxb/erg128]

    Article  PubMed  CAS  Google Scholar 

  • Whitten, M., 1997. Subsurface Acdidification: Estimation Lime Requirements from Lime Dissolution Rates in the Field. In: Williamson, D.R. (Ed.), Proceedings of the Fourth Triennial Western Australian Soil Science Conference. African Reef Resort, Geraldton, Western Australia, p.128–131.

    Google Scholar 

  • Williams, C.H., 1980. Soil acidification under clover pasture. Aust. J. Exp. Agric., 20(106):561–567. [doi:10.1071/EA9800561]

    Article  Google Scholar 

  • Wu, P., Liao, C.Y., Hu, B., Yi, K.K., Jin, W.Z., Ni, J.J., He, C., 2000. QTLs and epistasis for aluminum tolerance in rice (Oryza sativa L.) at different seedling stages. Theor. Appl. Genet., 100(8):1295–1303. [doi:10.1007/s001220051438]

    Article  CAS  Google Scholar 

  • Xu, A.B., Dang, B.Y., Zhu, M.Y., Yuan, M.B., Huang, C.N., Yu, J.J., Huang, Q., Wu, Y.L., Ni, Z.Y., 1991. Screening barley varieties for tolerance of acidic aluminium. Crop genet. Res., 3:17–19.

    Google Scholar 

  • Yang, J.L., Zheng, S.J., He, Y.F., You, J.F., Zhang, L., Yu, X.H., 2006. Comparative studies on the effect of a protein-synthesis inhibitor on aluminum-induced secretion of organic acids from Fagopyrum esculentum Moench and Cassia tora L. roots. Plant Cell Environ., 29(2):240–246. [doi:10.1111/j.1365-3040.2005.01416.x]

    Article  CAS  PubMed  Google Scholar 

  • Zhao, Z.Q., Ma, J.F., Sato, K., Takeda, K., 2003. Differential Al resistance and citrate secretion in barley (Hordeum vulgare L.). Planta, 217(5):794–800. [doi:10.1007/s00425-003-1043-2]

    Article  PubMed  CAS  Google Scholar 

  • Zheng, S.J., Ma, J.F., Matsumoto, H., 1998. High aluminum resistance in buckwheat: I. Al-induced special secretion of oxalic acid from root tips. Plant Physiol., 117(3):745–751. [doi:10.1104/pp.117.3.745]

    Article  Google Scholar 

  • Zhu, M.Y., Pana, J., Wanga, L., Gua, Q., Huangd, C., 2003. Mutation induced enhancement of Al tolerance in barley cell lines. Plant Sci., 164(1):17–23. [doi:10.1016/S0168-9452(02)00317-5]

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhou Mei-xue.

Additional information

Project supported by NSW Agricultural Genomic Centre and the Grains Research and Development Corporation (GRDC) of Australia (No. UT8)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Jp., Raman, H., Zhang, Gp. et al. Aluminium tolerance in barley (Hordeum vulgare L.): Physiological mechanisms, genetics and screening methods. J. Zhejiang Univ. - Sci. B 7, 769–787 (2006). https://doi.org/10.1631/jzus.2006.B0769

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.2006.B0769

Key words

CLC number

Navigation