Skip to main content
Log in

Dependence of the E. coli promoter strength and physical parameters upon the nucleotide sequence

  • Biotechnology
  • Published:
Journal of Zhejiang University-SCIENCE B Aims and scope Submit manuscript

Abstract

The energy of interaction between complementary nucleotides in promoter sequences of E. coli was calculated and visualized. The graphic method for presentation of energy properties of promoter sequences was elaborated on. Data obtained indicated that energy distribution through the length of promoter sequence results in picture with minima at −35, −8 and +7 regions corresponding to areas with elevated AT (adenine-thymine) content. The most important difference from the random sequences area is related to −8. Four promoter groups and their energy properties were revealed. The promoters with minimal and maximal energy of interaction between complementary nucleotides have low strengths, the strongest promoters correspond to promoter clusters characterized by intermediate energy values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Babb, K., McAlister, J.D., Miller, J.C., Stevenson, B., 2004. Molecular characterization of borrelia burgdorferi promoter/operator elements.Journal of Bacteriology,186(9):2745–2756.

    Article  CAS  Google Scholar 

  • Burr, T., Mitchell, J., Minchin, S., Busby, S., 2000. DNA sequence elements located immediately upstream of the −10 hexamer inEscherichia coli promoters: a systematic study.Nucleic. Acids. Res.,28:1864–1870.

    Article  CAS  Google Scholar 

  • Campbell, E.A., Muzzin, O., Chlenov, M., Sun, J.L., Olson, C.A., Weinman, O., Trester-Zedlitz, M.L., Darst, S.A., 2002. Structure of the bacterial RNA polymerase promoter specificity σ subunit.Mol. Cell,9:527–539.

    Article  CAS  Google Scholar 

  • Gourse, R.L., Ross, W., Gaal, T., 2000. UPs and downs in bacterial transcription initiation: role of the α subunit of RNA polymerase in promoter recognition.Mol. Microbiol.,37:687–695.

    Article  CAS  Google Scholar 

  • Gralla, J.D., 1996. Activation and repression ofE. coli promoters.Curr. Opin. Genet.,6(5):526–530.

    Article  CAS  Google Scholar 

  • Guo, Y., Gralla, J.D., 1998. Promoter opening via a DNA fork junction binding activity.Proc. Natl. Acad. Sci. USA,95(20):11655–11660.

    Article  CAS  Google Scholar 

  • Jones, C.H., Tatti, K.M., Moran, C.P.Jr., 1992. Effects of amino acid substitutions in the −10 binding region of sigma E fromBacillus subtilis.J. Bacteriol.,174(2):6815–6821.

    Article  CAS  Google Scholar 

  • Juang, Y.L., Helmann, J.D., 1994. A promoter melting region in the primary sigma factor ofBacillus subtilis. Identification of functionally important aromatic amino acids.J. Mol. Biol.,235(5):1470–1488.

    Article  CAS  Google Scholar 

  • Kainz, M., Roberts, J., 1992. Structure of transcription elongation complexes in vivo.Science,255:838–841.

    Article  CAS  Google Scholar 

  • Kajitani, M., Ishihama, A., 1983. Determination of the promoter strength in the mixed transcription system. II. Promoters of ribosomal RNA, ribosomal protein S1 and recA protein operons fromEscherichia coli.Nucleic. Acids. Research,11(12):3873–3888.

    Article  CAS  Google Scholar 

  • Kanehisa, M., Goto, S., Kawashima, S., Kuno, Y., Hattori, M., 2004. The KEGG resources for deciphering the genome.Nucleic. Acids. Res.,32:D277-D280.

    Article  CAS  Google Scholar 

  • Kudritskaya, Z.G., Danilov, V.I., 1976. Quantum mechanical study of bases interactions in various associates in atomic dipole approximation.J. Theor. Biol.,59:301–318.

    Article  Google Scholar 

  • Meier, T., Schickor, P., Wedel, A., Cellai, L., Heumann, H., 1995. In vitro transcription close to the melting point of DNA: analysis of Thermotoga maritima RNA polymerase-promoter complexes at 75 degree C using chemical probes.Nucleic. Acids. Research,23(6):988–994.

    Article  CAS  Google Scholar 

  • Mori, H., Isono, K., Horiuchi, T., Miki, T., 2000. Functional genomics ofEscherichia coli in Japan.Res. Microbiol.,151:121–128.

    Article  CAS  Google Scholar 

  • Murakami, K.S., Masuda, S., Campbell, E.A., Muzzin, O., Darst, S.A., 2002. Structural basis of transcription initiation: an RNA polymerase holoenzyme-DNA complex.Science,296:1285–1290.

    Article  CAS  Google Scholar 

  • Roberts, C.W., Roberts, J.W., 1996. Base-specific recognition of the nontemplate strand of promoter DNA byE. coli RNA polymerase.Cell,86(3):495–501.

    Article  CAS  Google Scholar 

  • Ross, W., Ernst, A., Gourse, R.L., 2001. Fine structure ofE. coli RNA polymerase-promoter interactions: α subunit binding to the UP element minor groove.Genes and Development,15(5):491–506.

    Article  CAS  Google Scholar 

  • Spassky, A., Kirkegaard, K., Buc, H., 1985. Changes in the DNA structure of the lac UV5 promoter during formation of an open complex withEscherichia coli RNA polymerase.Biochemistry,24(11):2723–2731.

    Article  CAS  Google Scholar 

  • Vogel, S.K., Schulz, A., Rippe, K., 2002. Binding affinity ofEscherichia coli RNA polymerase σ54, holoenzyme for the glnAp2, nifH and nifL promoters.Nucleic. Acids. Research,30(18):4094–4101.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shckorbatov Yuriy G..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berezhnoy, A.Y., Shckorbatov, Y.G. Dependence of the E. coli promoter strength and physical parameters upon the nucleotide sequence. J Zheijang Univ Sci B 6, 1063–1068 (2005). https://doi.org/10.1631/jzus.2005.B1063

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.2005.B1063

Key words

CLC number

Navigation