Skip to main content
Log in

Anti-hepatocarcinoma activity of TT-1, an analog of melittin, combined with interferon-α via promoting the interaction of NKG2D and MICA

联合使用IFN-α 和TT-1 通过增强NKG2D 和 MICA 的相互作用达到抗肝癌效果的研究

  • Published:
Journal of Zhejiang University-SCIENCE B Aims and scope Submit manuscript

Abstract

Hepatocarcinoma is one of the malignant cancers with significant morbidity and mortality. Immunotherapy has emerged in clinical treatment, owing to the limitation and severe side effects of chemotherapy. In the immune system, natural killer (NK) cells are important effectors required to eliminate malignant tumor cells without the limitation of major histocompatibility complex (MHC) molecule issues. Hence, treatment which could stimulate NK cells is of great interest. Here, we investigated the efficacy of the combined therapy of TT-1 (a mutant of melittin) and interferon-α (IFN-α) on NK cells and human liver cancer HepG-2/Huh7 cells in vitro and in vivo, as well as the mechanism involved. The combination therapy significantly inhibited the growth of HepG-2/Huh7 cells in vivo, but this effect was impaired after depleting NK cells. TT-1 not only up-regulated MHC class I-related chain molecules A (MICA) expression, but also prevented the secretion of soluble MICA (sMICA). Both the mRNA and protein of a disintegrin and metallopeptidase 10 (ADAM 10) in HepG-2/Huh7 cells were decreased after TT-1 treatment. The combined therapy of TT-1 and IFN-α could suppress the growth of HepG-2/Huh7 xenografted tumor effectively via promoting the interaction of NK group 2, member D (NKG2D) and MICA, indicating that TT-1+IFN-α would be a potential approach in treating liver cancer.

摘要

目的

评估干扰素α(IFN-α)和TT-1(一种蜂毒肽的 类似物)联合用药的抗肿瘤效果,并初步研究联 合用药的抗肿瘤及免疫调节机制。

创新点

为了增强蜂毒肽的抗肿瘤效果,本课题组在其基 础上进行改造,合成了一种新的化合物TT-1。该 研究第一次将蜂毒肽类似物和免疫细胞因子 IFN-α 联合使用,并通过实验证实联合用药可以 通过激活免疫调节来增强TT-1 的抗肿瘤效果。

方法

首先通过MTT 实验验证TT-1 对HepG-2/Huh7 细 胞的增殖抑制作用。接着建立HepG-2/Huh7 小鼠 移植瘤模型,考察TT-1+IFN-α 的体内抗肿瘤效 果;使用anti-asialo GM-1 抗体消除自然杀伤 (NK)细胞,验证NK 细胞在联合用药中的关键 作用。使用流式细胞术和酶联免疫吸附法 (ELISA)验证TT-1 对HepG-2/Huh7 细胞MHC I 链相关分子A(MICA)表达的影响,并用实时 聚合酶联反应(RT-PCR)和蛋白质印迹(Western blot)对其机制进行探究;通过细胞毒性实验考察TT-1+IFN-α 是否可以增强NK细胞对HepG-2/ Huh7 细胞的特异性杀伤作用。最后使用免疫组 化的方法考察TT-1+IFN-α 联合用药对肿瘤组织 中MICA 和NKG2D 的表达量的影响。

结论

MTT 实验表明TT-1 可以在体外有效地抑制 HepG-2/Huh7 细胞的增殖。小鼠移植瘤模型实验 结果显示TT-1+IFN-α 联合用药比TT-1 单独给药 更能有效地抑制HepG-2/Huh7 移植瘤的生长,但 是在消除NK 细胞之后该效应明显减弱,说明 TT-1+IFN-α 的抗肿瘤效应是通过NK细胞特异性 介导的。TT-1 不仅可以上调肿瘤细胞表面MICA 的表达量,而且可以减少可溶性MICA 的分泌; 进一步研究表明,TT-1 通过抑制去整合素金属蛋 白酶10(ADAM 10)的表达来阻止MICA 从肿 瘤细胞表面脱落。细胞毒性实验表明,TT-1+IFN-α 可以显著增强NK细胞对HepG-2/Huh7 细胞的杀 伤作用。免疫组化实验结果显示,TT-1+IFN-α 联 合用药可以明显增加肿瘤组织中肿瘤细胞表面 MICA 和NK 细胞NKG2D 的表达量。综上所述, TT-1+IFN-α 联合用药可以通过增强MICA 和 NKG2D 的相互作用达到显著的抗肿瘤效果。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boige, V., Taïeb, J., Hebbar, M., et al., 2006. Irinotecan as first-line chemotherapy in patients with advanced hepatocellular carcinoma: a multicenter phase II study with dose adjustment according to baseline serum bilirubin level. Eur. J. Cancer, 42(4):456–459. http://dx.doi.org/10.1016/j.ejca.2005.09.034

    Article  CAS  PubMed  Google Scholar 

  • Brown, C.K., Kirkwood, J.M., 2003. Medical management of melanoma. Surg. Clin. North Am., 83(2):283–322. http://dx.doi.org/10.1016/S0039-6109(02)00187-1

    Article  PubMed  Google Scholar 

  • Cerwenka, A., Baron, J.L., Lanier, L.L., 2001. Ectopic expression of retinoic acid early inducible-1 gene (RAE-1) permits natural killer cell-mediated rejection of a MHC class I-bearing tumor in vivo. Proc. Natl. Acad. Sci. USA, 98(20):11521–11526. http://dx.doi.org/10.1073/pnas.201238598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dusheiko, G.M., Hobbs, K.E., Dick, R., et al., 1992. Treatment of small hepatocellular carcinomas. Lancet, 340(8814): 285–288. http://dx.doi.org/10.1016/0140-6736(92)92367-O

    Article  CAS  PubMed  Google Scholar 

  • Floros, T., Tarhini, A.A., 2015. Anticancer cytokines: biology and clinical effects of IFN-a2, IL-2, IL-15, IL-21, and IL-12. Semin. Oncol., 42(4):539–548. http://dx.doi.org/10.1053/j.seminoncol.2015.05.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Groh, V., Wu, J., Yee, C., et al., 2002. Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature, 419(6908):734–738. http://dx.doi.org/10.1038/nature01112

    Article  CAS  PubMed  Google Scholar 

  • Guan, Z., Wang, Y., Maoleekoonpairoj, S., et al., 2003. Prospective randomized phase II study of gemcitabine at standard or fixed dose rate schedule in unresectable hepatocellular carcinoma. Br. J. Cancer, 89(10):1865–1869. http://dx.doi.org/10.1038/sj.bjc.6601369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Habu, S., Fukui, H., Shimamura, K., et al., 1981. In vivo effects of anti-asialo GM1. I. Reduction of NKactivity and enhancement of transplanted tumor growth in nude mice. J. Immunol., 127(1):34–38.

    CAS  PubMed  Google Scholar 

  • Hebbar, M., Ernst, O., Cattan, S., et al., 2006. Phase II trial of docetaxel therapy in patients with advanced hepatocellular carcinoma. Oncology, 70(2):154–158. http://dx.doi.org/10.1159/000093007

    Article  CAS  PubMed  Google Scholar 

  • Hung, H., 2005. Treatment modalities for hepatocellular carcinoma. Curr. Cancer Drug Targets, 5(2):131–138. http://dx.doi.org/10.2174/1568009053202063

    Article  CAS  PubMed  Google Scholar 

  • Lee, W.P., Tai, D.I., Tsai, S.L., et al., 2003. Adenovirus type 5 E1A sensitizes hepatocellular carcinoma cells to gemcitabine. Cancer Res., 63(19):6229–6236.

    CAS  PubMed  Google Scholar 

  • Leung, H.W., Yang, W.H., Lai, M.Y., et al., 2007. Inhibition of 12-lipoxygenase during baicalein-induced human lung non-small carcinoma H460 cell apoptosis. Food Chem. Toxicol., 45(3):403–411. http://dx.doi.org/10.1016/j.fct.2006.08.021

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., Yue, H., Xu, S., et al., 2015. First-line gemcitabine and oxaliplatin (GEMOX) plus sorafenib, followed by sorafenib as maintenance therapy, for patients with advanced hepatocellular carcinoma. Int. J. Clin. Oncol., 20(5):952–959. http://dx.doi.org/10.1007/s10147-015-0796-5

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., Li, Y., Wang, R., et al., 2016. MiR-130a-3p regulates cell migration and invasion via inhibition of Smad4 in gemcitabine resistant hepatoma cells. J. Exp. Clin. Cancer Res., 35:19. http://dx.doi.org/10.1186/s13046-016-0296-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Morisaki, T., Onishi, H., Koya, N., et al., 2011. Combinatorial cytotoxicity of gemcitabine and cytokine-activated killer cells in hepatocellular carcinoma via the NKG2DMICA/B system. Anticancer Res., 31(7):2505–2510.

    CAS  PubMed  Google Scholar 

  • Mundy-Bosse, B.L., Lesinski, G.B., Jaime-Ramirez, A.C., et al., 2011. Myeloid-derived suppressor cell inhibition of the IFN response in tumor-bearing mice. Cancer Res., 71(15):5101–5110. http://dx.doi.org/10.1158/0008-5472.CAN-10-2670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oršolic, N., 2012. Bee venom in cancer therapy. Cancer Metastasis Rev., 31(1-2):173–194. http://dx.doi.org/10.1007/s10555-011-9339-3

    Article  PubMed  Google Scholar 

  • Parlato, S., Santini, S.M., Lapenta, C., et al., 2001. Expreßsion of CCR-7, MIP-3ß, and Th-1 chemokines in type I IFN-induced monocyte-derived dendritic cells: importance for the rapid acquisition of potent migratory and functional activities. Blood, 98(10):3022–3029. http://dx.doi.org/10.1182/blood.V98.10.3022

    Article  CAS  PubMed  Google Scholar 

  • Reiss, K., Ludwig, A., Saftig, P., 2006. Breaking up the tie: disintegrin-like metalloproteinases as regulators of cell migration in inflammation and invasion. Pharmacol. Ther., 111(3):985–1006. http://dx.doi.org/10.1016/j.pharmthera.2006.02.009

    Article  CAS  PubMed  Google Scholar 

  • Salih, H.R., Rammensee, H.G., Steinle, A., 2002. Cutting edge: down-regulation of MICA on human tumors by proteolytic shedding. J. Immunol., 169(8):4098–4102. http://dx.doi.org/10.4049/jimmunol.169.8.4098

    Article  CAS  PubMed  Google Scholar 

  • Sommer, A., Fries, A., Cornelsen, I., et al., 2012. Melittin modulates keratinocyte function through P2 receptordependent ADAM activation. J. Biol. Chem., 287(28): 23678–23689. http://dx.doi.org/10.1074/jbc.M112.362756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Son, D.J., Lee, J.W., Lee, Y.H., et al., 2007. Therapeutic application of anti-arthritis, pain-releasing, and anticancer effects of bee venom and its constituent compounds. Pharmacol. Ther., 115(2):246–270. http://dx.doi.org/10.1016/j.pharmthera.2007.04.004

    Article  CAS  PubMed  Google Scholar 

  • Taïeb, J., Bonyhay, L., Golli, L., et al., 2003. Gemcitabine plus oxaliplatin for patients with advanced hepatocellular carcinoma using two different schedules. Cancer, 98(12): 2664–2670. http://dx.doi.org/10.1002/cncr.11869

    Article  PubMed  Google Scholar 

  • Thompson, C.B., Allison, J.P., 1997. The emerging role of CTLA-4 as an immune attenuator. Immunity, 7(4):445–450. http://dx.doi.org/10.1016/S1074-7613(00)80366-0

    Article  CAS  PubMed  Google Scholar 

  • Ueda, K., Akiba, J., Ogasawara, S., et al., 2016. Growth inhibitory effect of an injectable hyaluronic acid-tyramine hydrogels incorporating human natural interferon-a and sorafenib on renal cell carcinoma cells. Acta Biomater., 29:103–111. http://dx.doi.org/10.1016/j.actbio.2015.10.024

    Article  CAS  PubMed  Google Scholar 

  • Waldhauer, I., Steinle, A., 2006. Proteolytic release of soluble UL16-binding protein 2 from tumor cells. Cancer Res., 66(5):2520–2526. http://dx.doi.org/10.1158/0008-5472.CAN-05-2520

    Article  CAS  PubMed  Google Scholar 

  • Waldhauer, I., Goehlsdorf, D., Gieseke, F., et al., 2008. Tumor-associated MICA is shed by ADAM proteases. Cancer Res., 68(15):6368–6376. http://dx.doi.org/10.1158/0008-5472.CAN-07-6768

    Article  CAS  PubMed  Google Scholar 

  • Wang, T., Sun, F., Xie, W., et al., 2016. A bispecific protein rG7S-MICA recruits natural killer cells and enhances NKG2D-mediated immunosurveillance against hepatocellular carcinoma. Cancer Lett., 372(2):166–178. http://dx.doi.org/10.1016/j.canlet.2016.01.001

    Article  CAS  PubMed  Google Scholar 

  • Wu, J.D., Higgins, L.M., Steinle, A., et al., 2004. Prevalent expression of the immunostimulatory MHC class I chainrelated molecule is counteracted by shedding in prostate cancer. J. Clin. Invest., 114(4):560–568. http://dx.doi.org/10.1172/JCI200422206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, J.D., Atteridge, C.L., Wang, X., et al., 2009. Obstructing shedding of the immunostimulatory MHC class I chainrelated gene B prevents tumor formation. Clin. Cancer Res., 15(2):632–640. http://dx.doi.org/10.1158/1078-0432.CCR-08-1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie, W., Liu, F., Wang, Y., et al., 2016. VEGFR2 targeted antibody fused with MICA stimulates NKG2D mediated immunosurveillance and exhibits potent anti-tumor activity against breast cancer. Oncotarget, 7(13):16445–16461. http://dx.doi.org/10.18632/oncotarget.7501

    PubMed  Google Scholar 

  • Yang, J.T., Tang, L.H., Liu, Y.Q., et al., 2015. Cisplatin combined with hyperthermia kills HepG2 cells in intraoperative blood salvage but preserves the function of erythrocytes. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 16(5):395–403. http://dx.doi.org/10.1631/jzus.B1400224

    Article  CAS  Google Scholar 

  • Zwirner, N.W., Fuertes, M.B., Girart, M.V., et al., 2007. Cytokine-driven regulation of N Kcell functions in tumor immunity: role of the MICA-NKG2D system. Cytokine Growth Factor Rev., 18(1-2):159–170. http://dx.doi.org/10.1016/j.cytogfr.2007.01.013

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-qun Ren.

Additional information

The two authors contributed equally to this work

Project supported by the Outstanding Young Talent Foundation Project of Science and Technology Department in Jilin Province (No. 20170520018JH), China

ORCID: Lan-lan WAN, http://orcid.org/0000-0002-3728-2051

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, Ll., Zhang, Dq., Zhang, Jn. et al. Anti-hepatocarcinoma activity of TT-1, an analog of melittin, combined with interferon-α via promoting the interaction of NKG2D and MICA. J. Zhejiang Univ. Sci. B 18, 522–531 (2017). https://doi.org/10.1631/jzus.B1600369

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1600369

Key words

CLC number

关键词

Navigation