Skip to main content
Log in

Alternaria toxin-induced resistance against rose aphids and olfactory response of aphids to toxin-induced volatiles of rose plants

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

The search for active toxins for managing weeds or plant diseases is believed to be a promising avenue of investigation. However, the effects of Alternaria toxins on insects have just begun to be investigated. Bioactivities of toxins from four strains of Alternaria alternata on Rosa chinensis and rose aphid Macrosiphum rosivorum were tested in the present study. At a concentration of 50.0 μg/ml, the crude extract (toxin) of strain 7484 was found not to be harmful to rose plants with excised leaf-puncture method (P≥0.079), and rose plants showed enhanced resistance to rose aphids when this Alternaria toxin was sprayed on the plants (P≤0.001). However, this toxin caused no detrimental effects on aphids in insecticidal bioassay at a concentration of 10.0 to 160.0 μg/ml (P≥0.096). Therefore, the Alternaria toxin had significantly induced the resistance of rose plants against rose aphids, demonstrating that the resistance mechanism triggered by the Alternaria toxin in the rose plant may also be used by the plant to defend itself against insects. Further bioassays aimed to discover the olfactory responses of aphids to the toxin-induced volatiles of host plants. The aphids were significantly more attracted to both volatiles emitted and collected from control rose plants than to both volatiles emitted and collected from the toxin-treated rose plants (P≤0.014). This result showed that the toxin-induced resistance related to the volatile changes of host plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbas, H.K., Vesonder, R.F., Boyette, C.D., Peterson, S.W., 1993. Phytotoxicity of AAL-toxin and other compounds produced by Alternaria alternata to jimsonweed (Datura stramonium). Can. J. Bot., 71(1):155–160. [doi:10.1139/b93-017]

    Article  CAS  Google Scholar 

  • Abbas, H.K., Tanaka, T., Shier, W.T., 1995. Biological activities of synthetic analogues of Alternaria alternata toxin (AAL-toxin) and fumonisin in plant and mammalian cell cultures. Phytochemistry, 40(6):1681–1689. [doi:10.1016/0031-9422(95)00470-R]

    Article  PubMed  CAS  Google Scholar 

  • Ballhorn, D.J., 2011. Constraints of simultaneous resistance to a fungal pathogen and an insect herbivore in lima bean (Phaseolus lunatus L.). J. Chem. Ecol., 37(2):141–144. [doi:10.1007/s10886-010-9905-0]

    Article  PubMed  CAS  Google Scholar 

  • Ballhorn, D.J., Pietrowski, A., Lieberei, R., 2010. Direct trade-off between cyanogenesis and resistance to a fungal pathogen in lima bean (Phaseolus lunatus L.). J. Ecol., 98(1):226–236. [doi:10.1111/j.1365-2745.2009.01591.x]

    Article  CAS  Google Scholar 

  • Berestetskiy, A.O., 2008. A review of fungal phytotoxins: from basic studies to practical use. Appl. Biochem. Microbiol., 44(5):453–465. [doi:10.1134/S0003683808050013]

    Article  CAS  Google Scholar 

  • Bobylev, M.M., Bobyleva, L.I., Strobel, G.A., 1996. Synthesis and bioactivity of analogs of maculosin, a host-specific phytotoxin produced by Alternaria alternata on spotted knapweed (Centaurea maculosa). J. Agric. Food Chem., 44(12):3960–3964. [doi:10.1021/jf960091c]

    Article  CAS  Google Scholar 

  • Chelkowski, J., Visconti, A., 1992. Alternaria: Biology, Plant Diseases and Metabolites. Elsevier, Amsterdam, the Netherlands, p.449–541.

    Google Scholar 

  • Chen, S., Dai, X., Qiang, S., Tang, Y., 2005. Effect of a nonhost-selective toxin from Alternaria alternata on chloroplast-electron transfer activity in Eupatorium adenophorum. Plant Pathol., 54(5):671–677. [doi:10. 1111/j.1365-3059.2005.01249.x]

    Article  CAS  Google Scholar 

  • Cipollini, D., Enright, S., Traw, M.B., Bergelson, J., 2004. Salicylic acid inhibits jasmonic acid-induced resistance of Arabidopsis thaliana to Spodoptera exigua. Mol. Ecol., 13(6):1643–1653. [doi:10.1111/j.1365-294X.2004.02161.x]

    Article  PubMed  CAS  Google Scholar 

  • Egusa, M., Akamatsu, H., Tsuge, T., Otani, H., Kodama, M., 2008. Induced resistance in tomato plants to the toxin-dependent necrotrophic pathogen Alternaria alternata. Physiol. Mol. Plant Pathol., 73(4–5):67–77. [doi:10.1016/j.pmpp.2009.02.001]

    Article  CAS  Google Scholar 

  • Evidente, A., Punzo, B., Andolfi, A., Berestetskiy, A., Motta, A., 2009. Alternethanoxins A and B, polycyclic ethanones produced by Alternaria sonchi, potential mycoherbicides for Sonchus arvensis biocontrol. J. Agric. Food Chem., 57(15):6656–6660. [doi:10.1021/jf9014944]

    Article  PubMed  CAS  Google Scholar 

  • Fraser, A.M., Mechaber, W.L., Hildebrand, J.G., 2003. Electroantennographic and behavioural responses of the sphinx moth Manduca sexta to host plant headspace volatiles. J. Chem. Ecol., 29(8):1813–1833. [doi:10.1023/A:1024898127549]

    Article  PubMed  CAS  Google Scholar 

  • Hammack, L., 2003. Volatile semiochemical impact on trapping and distribution in maize of northern and western corn rootworm beetles (Coleoptera: Chrysomelidae). Agric. Forest Entomol., 5(2):113–122. [doi:10.1046/j.1461-9563.2003.00171.x]

    Article  Google Scholar 

  • Hammerschmidt, R., 1999. Induced disease resistance: how do induced plants stop pathogens? Physiol. Mol. Plant Pathol., 55(2):77–85. [doi:10.1006/pmpp.1999.0215]

    Article  CAS  Google Scholar 

  • Hatcher, P.E., Paul, N.D., Ayres, P.G., Whittaker, J.B., 1995. Interactions between Rumex spp., herbivore and a rust fungus: the effect of Uromyces rumicis infection on leaf nutritional quality. Funct. Ecol., 9(1):97–105. [doi:10. 2307/2390095]

    Article  Google Scholar 

  • Heath, M.C., Skalamera, D., 1997. Cellular interactions between plants and biotrophic fungal parasites. Adv. Bot. Res., 24:195–225. [doi:10.1016/S0065-2296(08)60074-9]

    Article  CAS  Google Scholar 

  • Heil, M., Bostock, R., 2002. Induced systemic resistance (ISR) against pathogens in the context of induced plant defences. Ann. Bot., 89(5):503–512. [doi:10.1093/aob/mcf076]

    Article  PubMed  CAS  Google Scholar 

  • Kaul, S., Wani, M., Dhar, K.L., Dhar, M.K., 2008. Production and GC-MS trace analysis of methyl eugenol from endophytic isolate of Alternaria from rose. Ann. Microbiol., 58(3):443–445. [doi:10.1007/BF03175541]

    Article  CAS  Google Scholar 

  • Kazem, M.G.T., El-Shereif, S.A.E.H.N., 2010. Toxic effect of capsicum and garlic xylene extracts in toxicity of boiled linseed oil formulations against some piercing sucking cotton pests. American-Eurasian J. Agric. Environ. Sci., 8(4):390–396.

    Google Scholar 

  • Kombrink, E., Schmelzer, E., 2001. The hypersensitive response and its role in local and systemic disease resistance. Eur. J. Plant Pathol., 107(1):69–78. [doi:10.1023/A: 1008736629717]

    Article  Google Scholar 

  • Montesano, M., Brader, G., Palva, E.T., 2003. Pathogen derived elicitors: searching for receptors in plants. Mol. Plant Pathol., 4(1):73–79. [doi:10.1046/j.1364-3703.2003.00150.x]

    Article  PubMed  CAS  Google Scholar 

  • Park, S.H., Stierle, A., Strobel, G.A., 1993. Metabolism of maculosin, a host-specific phytotoxin produced by Alternaria alternata on spotted knapweed (Centaurea maculosa). Phytochemistry, 35(1):101–106. [doi:10.1016/S0031-9422(00)90516-8]

    Article  Google Scholar 

  • Qiang, S., Wang, L., Wei, R., Zhou, B., Chen, S., Zhu, Y., Dong, Y., An, C., 2010. Bioassay of the herbicidal activity of AAC-toxin produced by Alternaria alternata isolated from Ageratina adenophora. Weed Technol., 24(2): 197–201. [doi:10.1614/WT-D-09-00016.1]

    Article  Google Scholar 

  • Rayamajhi, M.B., Van, T.K., Pratt, P.D., Center, T.D., 2006. Interactive association between Puccinia psidii and Oxyops vitiosa, two introduced natural enemies of Melaleuca quinquenervia in Florida. Biol. Control, 37(1): 56–67. [doi:10.1016/j.biocontrol.2005.10.013]

    Article  Google Scholar 

  • Rostás, M., Hilker, M., 2002. Asymmetric plant-mediated cross-effects between a herbivorous insect and a phytopathogenic fungus. Agric. Forest Entomol., 4(3):223–231. [doi:10.1046/j.1461-9563.2002.00147.x]

    Article  Google Scholar 

  • Rostás, M., Simon, M., Hilker, M., 2003. Ecological cross-effects of induced plant responses towards herbivores and phytopathogenic fungi. Basic Appl. Ecol., 4(1):43–62. [doi:10.1078/1439-1791-00132]

    Article  Google Scholar 

  • Strange, R.N., 2003. Introduction to Plant Pathology. John Wiley & Sons, Chichester, UK.

    Google Scholar 

  • Stribley, M.F., Moores, G.D., Devonshire, A.L., Sawick, R.M., 1983. Application of the FAO-recommended method for detecting insecticide resistance in Aphis jabae Scopoli, Sitobion avenae (F.), Metopolophium dirhodum (Walker) and Rhopalosiphum padi (L.) (Hemiptera: Aphididae). Bull. Entomol. Res., 73:107–115. [doi:10.1017/S0007485300013845]

    Article  Google Scholar 

  • Strobel, G., Kenfield, D., Bunkers, G., Sugawara, F., Clardy, J., 1991. Phytotoxins as potential herbicides. Cell. Mol. Life Sci., 47(8):819–826. [doi:10.1007/BF01922462]

    Article  CAS  Google Scholar 

  • Švábová, L., Lebeda, A., 2005. In vitro selection for improved plant resistance to toxin-producing pathogens. J. Phytopathol., 153(1):52–64. [doi:10.1111/j.1439-0434.2004.00928.x]

    Article  Google Scholar 

  • Wan, Z.X., Qiang, S., Xu, S.C., Shen, Z.G., Dong, Y.F., 2001. Culture conditions for production of phytotoxin by Alternaria alternata and plant range of toxicity. Chin. J. Biol. Control, 17(3):10–15.

    Google Scholar 

  • Zhang, L.H., 2003. Quorum quenching and proactive host defense. Trends Plant Sci., 8(5):238–244. [doi:10.1016/S1360-1385(03)00063-3]

    Article  PubMed  CAS  Google Scholar 

  • Zhao, J., Sakai, K., 2003. Multiple signalling pathways mediate fungal elicitor-induced β-thujaplicin biosynthesis in Cupressus lusitanica cell cultures. J. Exp. Bot., 54(383): 647–656. [doi:10.1093/jxb/erg062]

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Yang.

Additional information

Project supported by the Scientific and Technological Department (No. 2008CD140) and the Education Department (No. 08z0027) of Yunnan Province in China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Fz., Li, L. & Yang, B. Alternaria toxin-induced resistance against rose aphids and olfactory response of aphids to toxin-induced volatiles of rose plants. J. Zhejiang Univ. Sci. B 13, 126–135 (2012). https://doi.org/10.1631/jzus.B1100087

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1100087

Key words

CLC number

Navigation