Skip to main content
Log in

Energy harvesting with a slotted-cymbal transducer

  • Science Letters
  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

A cymbal transducer is made up of a piezoceramic disk sandwiched between two dome-shaped metal endcaps. High circumferential stresses caused by flexural motion of the metal endcaps can induce the loss of mechanical input energy. Finite element analysis shows that the radial slots fabricated in metal endcaps can release the circumferential stresses, and reduce the loss of mechanical input energy that could be converted into electrical energy. In this letter, the performance of a slotted-cymbal transducer in energy harvesting was tested. The results show that the output voltage and power of the cymbal are improved. A maximum output power of around 16 mW could be harvested from a cymbal with 18 cone radial slots across a 500 kΩ resistive load, which is approximately 0.6 times more than that of the original cymbal transducer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chen, W.S., Shi, S.J., 2007. A bidirectional standing wave ultrasonics linear motor based on Langevin bending transducer. Ferroelectrics, 350:102–110. [doi:10.1080/00150190701369958]

    Article  Google Scholar 

  • Jiang, S.N., Hu, Y.T., 2007. Analysis of a piezoelectric bimorph plate with a central-attached mass as an energy harvester. IEEE Trans. Ultrason. Ferroelectr. Freq. Contr., 54(7):1463–1469. [doi:10.1109/TUFFC.2007.407]

    Article  Google Scholar 

  • Jiang, S.N., Li, X.F., Guo, S.H., Hu, Y.T., Yang, J.S., Jiang, Q., 2005. A piezoelectric analysis of a vibrating ceramic bimorph for power harvesting. Smart Mater. Struct., 14(4):769–774. [doi:10.1088/0964-1726/14/4/036]

    Article  Google Scholar 

  • Ke, Y.L., Guo, T., Li, J.X., 2004. A new-style, slotted-cymbal transducer with large displacement and high energy transmission. IEEE Trans. Ultrason. Ferroelectr. Freq. Contr., 51(9):1171–1177. [doi:10.1109/TUFFC.2004.1334850]

    Article  Google Scholar 

  • Kim, H.W., Batra, A., Priya, S., Uchino, K., Markley, D., Newnham, R.E., Hofmann, H.F., 2004. Energy harvesting using a piezoelectric “cymbal” transducer in dynamic environment. Jpn. J. Appl. Phys., 43(9):6178–6183. [doi:10.1143/JJAP.43.6178]

    Article  Google Scholar 

  • Kim, H.W., Priya, S., Uchino, K., Newnham, R.E., 2005. Piezoelectric energy harvesting under high pre-stressed cyclic vibrations. J. Electroceram., 15(1):27–34. [doi:10.1007/s10832-005-0897-z]

    Article  Google Scholar 

  • Kim, H.W., Priya, S., Uchino, K., 2006. Modeling of piezoelectric energy harvesting using cymbal transducers. Jpn. J. Appl. Phys., 45(7):5836–5840. [doi:10.1143/JJAP.45.5836]

    Article  Google Scholar 

  • Kim, H.W., Priya, S., Stephanou, H., Uchino, K., 2007. Consideration of impedance matching techniques for efficient piezoelectric energy harvesting. IEEE Trans. Ultrason. Ferroelectr. Freq. Contr., 54(9):1851–1859. [doi:10. 1109/TUFFC.2007.469]

    Article  Google Scholar 

  • Li, X., Chen, W.S., Xie, T., Liu, J.K., 2007. Novel high torque bearingless two-sided rotary ultrasonic motor. J. Zhejiang Univ. Sci. A, 8(5):786–792. [doi:10.1631/jzus.2007. A0786]

    Article  Google Scholar 

  • Liu, P.K., Sun, L.N., Zhu, Y.H., Zhao, Y.F., 2002. Analysis on piezoelectric bimorph actuator for in-pipe micro robot. Piezoelectric & Acoustooptics, 24(2):111–115 (in Chinese).

    Google Scholar 

  • Mateu, L., Moll, F., 2007. System-level Simulation of a Self-powered Sensor with Piezoelectric Energy Harvesting. Int. Conf. on Sensor Technologies and Applications, p.399–404. [doi:10.1109/SENSORCOMM.2007.92]

  • Newnham, R.E., Zhang, J., 2001. Cymbal Transducer: A Review. Proc. 12th IEEE Int. Symp. on Applications of Ferroelectrics, p.29–32.

  • Newnham, R.E., Xu, Q.C., Yoshikawa, S., 1994. Metalelectroactive Ceramic Composite Actuators. US Patent 5 276 657.

  • Priya, S., 2005. Modeling of electric energy harvesting using piezoelectric windmill. Appl. Phys. Lett., 87(18):184101. [doi:10.1063/1.2119410]

    Article  Google Scholar 

  • Wang, S., Lam, K.H., Sun, C.L., Kwok, K.W., Chan, H.L.W., Guo, M.S., Zhao, X.Z., 2007. Energy harvesting with piezoelectric drum transducer. Appl. Phys. Lett., 90(11): 113506. [doi:10.1063/1.2713357]

    Article  Google Scholar 

  • Yoon, H.S., Washington, G., Danak, A., 2005. Modeling, optimization, and design of efficient initially curved piezoceramic unimorphs for energy harvesting applications. J. Intell. Mater. Syst. Struct., 16(10):877–888. [doi:10.1177/1045389X05055759]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang-bo Yuan.

Additional information

Project supported by the National Natural Science Foundation of China (No. 50875057) and the Natural Scientific Research Innovation Foundation in Harbin Institute of Technology, China (No. HIT. NSRIF.2008.50)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, Jb., Shan, Xb., Xie, T. et al. Energy harvesting with a slotted-cymbal transducer. J. Zhejiang Univ. Sci. A 10, 1187–1190 (2009). https://doi.org/10.1631/jzus.A0920183

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A0920183

Key words

CLC number

Navigation