Skip to main content

Advertisement

Log in

Steel fiber orientational distribution and effects on 3D printed concrete with coarse aggregate

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

In this study, the first insight into the extrusion-based 3D printed steel fiber reinforced concrete with 5–20 mm coarse aggregate (3DPSFRC) is presented. The fresh properties and mechanical performance of 0%, 1% and 2% fiber content 3DPSFRC were investigated and compared with those of the cast. Through the deep-learning segmentation method, the centerlines of steel fibers in the X-ray micro-computed tomography image sequence are extracted and 3D analyzed. The orientational distribution coefficients were introduced to quantitatively indicate the degree of steel fiber inclination in the printing (θ) and stacking directions (γ) inside the 3DPSFRC. Results indicate that the flowability of 3DPSFRC was decreased due to the presence of steel fibers compared with plain concrete. The enhancement effect of steel fiber on the compressive, flexural, and axial tensile strength (up to 73.24 MPa, 8.71 MPa, and 7.58 MPa, respectively) and post-peak toughness of 3DPSFRC is remarkable. The weakening of orientational distribution coefficients and the partial divergence distribution of steel fibers are related to the presence of coarse aggregate. Further, the anisotropy of 3DPSFRC in the compressive and flexural tests is weakened owing to the changes in the fiber orientational distribution after the steel fiber content increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Wang X, Jiang M, Zhou Z, Gou J, Hui D (2017) 3D printing of polymer matrix composites: a review and prospective. Compos Part B-Eng 110:442–458. https://doi.org/10.1016/j.compositesb.2016.11.034

    Article  Google Scholar 

  2. Schutter GD, Lesage K, Mechtcherine V, Nerella VN, Habert G, Agusti-Juan I (2018) Vision of 3D printing with concrete—technical, economic and environmental potentials. Cem Concr Res 112:25–36. https://doi.org/10.1016/j.cemconres.2018.06.001

    Article  Google Scholar 

  3. Mechtcherine V, Bos FP, Perrot A, Leal da Silva WR, Nerella VN, Fataei S, Wolfs RJM, Sonebi M, Roussel N (2020) Extrusion-based additive manufacturing with cement-based materials-production steps, processes, and their underlying physics: a review. Cem Concr Res 132:106037. https://doi.org/10.1016/j.cemconres.2020.106037

    Article  Google Scholar 

  4. Tay YWD, Panda B, Paul SC, Mohamed NAN, Tan MJ, Leong KF (2017) 3D printing trends in building and construction industry: a review. Virtual Phys Prototy 12(3):1–16. https://doi.org/10.1080/17452759.2017.1326724

    Article  Google Scholar 

  5. Pegna J (1997) Exploratory investigation of solid freeform construction. Autom Constr 5(5):427–437. https://doi.org/10.1016/S0926-5805(96)00166-5

    Article  Google Scholar 

  6. Shao Y, Marikunte S, Shah SP (1995) Extruded fiber-reinforced composites. Concr Int 4(17):48–53. https://doi.org/10.1016/b978-008044100-9/50030-9

    Article  Google Scholar 

  7. Srinivasan R, DeFord D, Shah SP (1999) The use of extrusion rheometry in the development of extruded fiber-reinforced cement composites. Concr Sci Eng 1(1):26–36

    Google Scholar 

  8. Kuder KG, Shah SP (2006) Rheology of extruded cement-based materials. In: Measuring, monitoring and modeling concrete properties, pp 479–484. https://doi.org/10.1007/978-1-4020-5104-3_58

  9. Quanji Z, Lomboy GR, Wang K (2014) Influence of nano-sized highly purified magnesium alumino silicate clay on thixotropic behavior of fresh cement pastes. Constr Build Mater 69:295–300. https://doi.org/10.1016/j.conbuildmat.2014.07.050

    Article  Google Scholar 

  10. Xu W, Zhang Y, Jiang J, Liu Z, Jiao Y (2021) Thermal conductivity and elastic modulus of 3D porous/fractured media considering percolation. Int J Eng Sci 161:103456. https://doi.org/10.1016/j.ijengsci.2021.103456

    Article  MATH  Google Scholar 

  11. Liu Z, Xu D, Gao S, Zhang Y, Jiang J (2020) Assessing the adsorption and diffusion behavior of multicomponent ions in saturated calcium silicate hydrate gel pores using molecular dynamics. ACS Sustain Chem Eng 8:3718–3727. https://doi.org/10.1021/acssuschemeng.9b06817

    Article  Google Scholar 

  12. Liu C, Liu Z, Zhang Y (2020) A multi-scale framework for modelling effective gas diffusivity in dry cement paste: combined effects of surface, Knudsen and molecular diffusion. Cem Concr Res 131:106035. https://doi.org/10.1016/j.cemconres.2020.106035

    Article  Google Scholar 

  13. Perrot A, Rangeard D, Pierre A (2016) Structural built-up of cement-based materials used for 3D-printing extrusion techniques. Mater Struct 49(4):1213–1220. https://doi.org/10.1617/s11527-015-0571-0

    Article  Google Scholar 

  14. Tregger NA, Pakula ME, Shah SP (2010) Influence of clays on the rheology of cement pastes. Cem Concr Res 40(3):384–391. https://doi.org/10.1016/j.cemconres.2009.11.001

    Article  Google Scholar 

  15. Buswell RA, Leal de Silva WR, Jones SZ, Dirrenberger J (2018) 3D printing using concrete extrusion: a roadmap for research. Cem Concr Res 112:37–49. https://doi.org/10.1016/j.cemconres.2018.05.006

    Article  Google Scholar 

  16. Perkins I, Skitmore M (2015) Three-dimensional printing in the construction industry: a review. Int J Constr Manag 15(1):1–9. https://doi.org/10.1080/15623599.2015.1012136

    Article  Google Scholar 

  17. Lim S, Buswell RA, Le TT, Austin SA, Gibb AGF, Thorpe T (2012) Developments in construction-scale additive manufacturing processes. Autom Constr 21:262–268. https://doi.org/10.1016/j.autcon.2011.06.010

    Article  Google Scholar 

  18. David S (2012) Printed buildings: an international race for the ultimate in automation. Constr Res Innov 3(2):26–31. https://doi.org/10.1080/20450249.2012.11873838

    Article  Google Scholar 

  19. Khan MS, Sanchez F, Zhou H (2020) 3-D printing of concrete: beyond horizons. Cem Concr Res 133:106070. https://doi.org/10.1016/j.cemconres.2020.106070

    Article  Google Scholar 

  20. Yu S, Du H, Sanjayan J (2020) Aggregate-bed 3D concrete printing with cement paste binder. Cem Concr Res 136:106169. https://doi.org/10.1016/j.cemconres.2020.106169

    Article  Google Scholar 

  21. Shen W, Dong R, Li J, Zhou M, Ma W, Zha J (2010) Experimental investigation on aggregate interlocking concrete prepared with scattering-filling coarse aggregate process. Constr Build Mater 24:2312–2316. https://doi.org/10.1016/j.conbuildmat.2010.04.023

    Article  Google Scholar 

  22. Rushing TS, Al-Chaar G, Eick BA, Burroughs J, Shannon J, Barna L, Case M (2017) Investigation of concrete mixtures for additive construction. Rapid Prototyp J 23(1):74–80. https://doi.org/10.1108/RPJ-09-2015-0124

    Article  Google Scholar 

  23. Ji G, Ding T, Xiao J, Du S, Li J, Duan Z (2019) A 3D printed ready-mixed concrete power distribution substation: materials and construction technology. Materials 12:1540. https://doi.org/10.3390/ma12091540

    Article  Google Scholar 

  24. Bai G, Wang L, Ma G, Sanjayan J, Bai M (2021) 3D printing eco-friendly concrete containing under-utilised and waste solids as aggregates. Cem Concr Compos 120:104037. https://doi.org/10.1016/j.cemconcomp.2021.104037

    Article  Google Scholar 

  25. Chen Y, Zhang Y, Pang B, Liu Z, Liu G (2021) Extrusion-based 3D printing concrete with coarse aggregate: printability and direction-dependent mechanical performance. Constr Build Mater 296:123624. https://doi.org/10.1016/j.conbuildmat.2021.123624

    Article  Google Scholar 

  26. Pang B, Jin ZQ, Zhang YS, Xu L, Li MY, Wang CC, Zhang Y, Yang Y, Zhao P, Bi JX, Zhu WW, Shen Y, Liu GJ, Zhu PP, Song XY (2022) Ultraductile waterborne epoxy-concrete composite repair material: Epoxy-fiber synergistic effect on flexural and tensile performance. Cement Concrete Comp 129:104463. https://doi.org/10.1016/j.cemconcomp.2022.104463

    Article  Google Scholar 

  27. Xiao J, Liu H, Ding T (2021) Finite element analysis on the anisotropic behavior of 3D printed concrete under compression and flexure. Addit Manuf 39:101712. https://doi.org/10.1016/j.addma.2020.101712

    Article  Google Scholar 

  28. Le TT, Austin SA, Lim S, Buswell RA, Gibb AGF, Thorpe T (2012) Mix design and fresh properties for high-performance printing concrete. Mater Struct 45(8):1221–1232. https://doi.org/10.1617/s11527-012-9828-z

    Article  Google Scholar 

  29. Panda B, Paul SC, Hui LJ, Tay YWD, Tan MJ (2017) Additive manufacturing of geopolymer for sustainable built environment. J Clean Prod 167:281–288. https://doi.org/10.1016/j.jclepro.2017.08.165

    Article  Google Scholar 

  30. Sanjayan JG, Nematollahi B, Xia M, Marchment T (2018) Effect of surface moisture on inter-layer strength of 3D printed concrete. Constr Build Mater 172:468–475. https://doi.org/10.1016/j.conbuildmat.2018.03.232

    Article  Google Scholar 

  31. Hambach M, Volkmer D (2017) Properties of 3D-printed fiber-reinforced Portland cement paste. Cem Concr Compos 79:62–70. https://doi.org/10.1016/j.cemconcomp.2017.02.001

    Article  Google Scholar 

  32. Bos FP, Bosco E, Salet TAM (2018) Ductility of 3D printed concrete reinforced with short straight steel fibers. Virtual Phys Prototy 14(2):160–174. https://doi.org/10.1080/17452759.2018.1548069

    Article  Google Scholar 

  33. Arunothayan AR, Nematollahi B, Ranade R, Bong SH, Sanjayan J (2020) Development of 3D-printable ultra-high performance fiber-reinforced concrete for digital construction. Constr Build Mater 257:119546. https://doi.org/10.1016/j.conbuildmat.2020.119546

    Article  Google Scholar 

  34. Ma G, Li Z, Wang L, Wang F, Sanjayan J (2019) Mechanical anisotropy of aligned fiber reinforced composite for extrusion-based 3D printing. Constr Build Mater 202:770–783. https://doi.org/10.1016/j.conbuildmat.2019.01.008

    Article  Google Scholar 

  35. Manuel H, Rutzen M, Volkmer D (2019) Properties of 3D-printed fiber-reinforced Portland cement paste. In: 3D concrete printing technology, chapter 5. https://doi.org/10.1016/B978-0-12-815481-6.00005-1

  36. Pham L, Tran P, Sanjayan J (2020) Steel fibres reinforced 3D printed concrete: influence of fibre sizes on mechanical performance. Constr Build Mater 250:118785. https://doi.org/10.1016/j.conbuildmat.2020.118785

    Article  Google Scholar 

  37. Arunothayan AR, Nematollahi B, Ranade R, Bong SH, Sanjayan J, Khayat KH (2021) Fiber orientation effects on ultra-high performance concrete formed by 3D printing. Cem Concr Res 143:106384. https://doi.org/10.1016/j.cemconres.2021.106384

    Article  Google Scholar 

  38. Wang R, Gao XJ, Zhang J, Han G (2018) Spatial distribution of steel fibers and air bubbles in UHPC cylinder determined by X-ray CT method. Constr Build Mater 160:39–47. https://doi.org/10.1016/j.conbuildmat.2017.11.030

    Article  Google Scholar 

  39. Fan DQ, Yu R, Shui ZH, Wu CF, Song QL, Liu ZJ, Sun Y, Gao X, He YJ (2020) A new design approach of steel fibre reinforced ultra-high performance concrete composites: experiments and modeling. Cem Concr Compos 110:103597. https://doi.org/10.1016/j.cemconcomp.2020.103597

    Article  Google Scholar 

  40. Vásárhely L, Kónya Z, Kukovec Á, Vajtai R (2020) Microcomputed tomography–based characterization of advanced materials: a review. Mater Today Adv 8:100084. https://doi.org/10.1016/j.mtadv.2020.100084

    Article  Google Scholar 

  41. Kruger J, Plessis AD, Zijl GV (2021) An investigation into the porosity of extrusion-based 3D printed concrete. Addit Manuf 37:101740. https://doi.org/10.1016/j.addma.2020.101740

    Article  Google Scholar 

  42. Liu T, Qin S, Zou D, Song W, Teng J (2018) Mesoscopic modeling method of concrete based on statistical analysis of CT images. Constr Build Mater 192:429–441. https://doi.org/10.1016/j.conbuildmat.2018.10.136

    Article  Google Scholar 

  43. Park T, Her S, Jee H, Yoon S, Cho B, Hwang SH, Bae S (2020) Evaluation of orientation and distribution of steel fibers in high-performance concrete column determined via micro-computed tomography. Constr Build Mater 270:121473. https://doi.org/10.1016/j.conbuildmat.2020.121473

    Article  Google Scholar 

  44. Nam YJ, Hwang YK, Park JW, Lim YM (2019) Fiber-reinforced cementitious composite design with controlled distribution and orientation of fibers using three-dimensional printing technology. Concr Print Technol 3D:59–72. https://doi.org/10.1016/B978-0-12-815481-6.00004-X

    Article  Google Scholar 

  45. Alpaydin E (2016) Machine learning: the new AI. Cambridge, MA: The MIT Press

    Google Scholar 

  46. Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells W, Frangi A (eds) Medical image computing and computer-assisted intervention—MICCAI 2015. MICCAI 2015. Lecture notes in computer science 9351. https://doi.org/10.1007/978-3-662-54345-0_3

  47. Dragonfly 3.6 [Computer software]. Object Research Systems (ORS) Inc, Montreal, Canada, 2018; software available at http://www.theobjects.com/dragonfly

  48. Dupont D, Vandewalle L (2005) Distribution of steel fibers in rectangular sections. Cem Concr Compos 27(3):391–398. https://doi.org/10.1016/j.cemconcomp.2004.03.005

    Article  Google Scholar 

  49. Yap SP, Khaw KR, Alengaram UJ, Jumaat MZ (2015) Effect of fibre aspect ratio on the torsional behaviour of steel fibre-reinforced normal weight concrete and lightweight concrete. Eng Struct 101:24–33. https://doi.org/10.1016/j.engstruct.2015.07.007

    Article  Google Scholar 

  50. Han JH, Zhao M, Chen J, Lan X (2019) Effects of steel fiber length and coarse aggregate maximum size on mechanical properties of steel fiber reinforced concrete. Constr Build Mater 209:577–591. https://doi.org/10.1016/j.conbuildmat.2019.03.086

    Article  Google Scholar 

  51. Wolfs RJM, Bos FP, Salet TAM (2019) Hardened properties of 3D printed concrete: the influence of process parameters on interlayer adhesion. Cem Concr Res 119:132–140. https://doi.org/10.1016/j.cemconres.2019.02.017

    Article  Google Scholar 

  52. Soufeiani L, Raman SN, Jumaat MZB, Alengaram UJ, Ghadyani G, Mendis P (2016) Influences of the volume fraction and shape of steel fibers on fiber reinforced concrete subjected to dynamic loading: a review. Eng Struct 124:405–417. https://doi.org/10.1016/j.engstruct.2016.06.029

    Article  Google Scholar 

  53. Rossi P, Harrouche N (1990) Mix design and mechanical behaviour of some steel-fibre-reinforced concretes used in reinforced concrete structures. Mater Struct 23(4):256–266. https://doi.org/10.1007/BF02472199

    Article  Google Scholar 

  54. Lee C, Kim H (2010) Orientation factor and number of fibers at failure plane in ring-type steel fiber reinforced concrete. Cem Concr Res 40:810–819. https://doi.org/10.1016/j.cemconres.2009.11.009

    Article  Google Scholar 

  55. Ding C, Guo LP, Chen B (2020) Orientation distribution of polyvinyl alcohol fibers and its influence on bridging capacity and mechanical performances for high ductility cementitious composites. Constr Build Mater 247:118491. https://doi.org/10.1016/j.conbuildmat.2020.118491

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Key Research and Development Program of China (NO. 2019YFC1904904), Natural Science Foundation of China (51878153, 51808189 and 51678143).

Author information

Authors and Affiliations

Authors

Contributions

YC: Conceptualization, Methodology, Software, Validation, Investigation, Writing—original draft. YZ: Conceptualization, Resources, Writing—review & editing, Supervision, Funding acquisition. BP: Investigation, Methodology, Conceptualization, Writing—review & editing, Supervision. DW: Resources, Writing—review & editing. ZL: Resources, Writing—review & editing. GL: Writing—review & editing.

Corresponding author

Correspondence to Yunsheng Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

See Fig. 

Fig. 13
figure 13

Materials used in this study: a fine aggregates; b steel fibers; c 4.5–10 mm basalts; d 10–20 mm basalts

13.

See Table 4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Zhang, Y., Pang, B. et al. Steel fiber orientational distribution and effects on 3D printed concrete with coarse aggregate. Mater Struct 55, 100 (2022). https://doi.org/10.1617/s11527-022-01943-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-022-01943-7

Keywords

Navigation