Skip to main content
Log in

Meso-scale analysis on shear failure characteristics of asphalt–aggregate interface

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

An Erratum to this article was published on 02 October 2017

This article has been updated

Abstract

The bonding properties of asphalt–aggregate interface affect failure behaviors of asphalt mixtures. The objective of this study was to explore the shear failure characteristics of asphalt–aggregate interface by researching the interface shear strength and the continuous shear failure process. First, the oblique shear tests were conducted to investigate the interface shear strength under the influences of surface roughness, binder aging, loading rate, and aggregate type. Second, the direct shear tests were implemented to explore the continuous failure characteristics of the interface in terms of load–displacement curves. The interface bond-slip constitutive relation was established as a piecewise linear cohesive zone model. Finally, the grey relational analysis (GRA) was conducted to identify and prioritize the correlation between the applied experimental conditions and the interface bond-slip model parameters. The study results indicate that the improvement of surface roughness and loading rate could induce higher interface shear strength and a basalt aggregate with less silica has greater resistance to interface shear damage than a granite aggregate due to its stronger adhesion to binder. The interface shear resistance energy could benefit from higher surface roughness and normal stress level. Although binder aging could increase the interface shear strength, it imposes an adverse impact on the interface shear resistance energy. The established bond-slip constitutive model of the asphalt–aggregate interface could represent a three-stage evolutionary process of the interface shear failure. By performing the GRA, the binder aging condition would be the most significant factor affecting the interface shear performance when compared with the surface roughness and the normal stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

  • 02 October 2017

    Due to an unfortunate turn of events, this article was published with an erroneous version of Fig. 3. The thickness of the steel plate should be 4 (mm) instead of 40 (mm). Please find in this erratum the correct version of Fig. 3 that should be regarded as final version by the reader.

References

  1. Lu Y, Wang LB (2010) Molecular dynamics simulation to characterize asphalt–aggregate interfaces. In: Frost JD (ed) Characterization and behavior of interfaces, Atlanta, Georgia, USA, 21 September 2008 2010. IOS Press, pp 125–130. doi:10.3233/978-1-60750-491-7-125

  2. Moraes R, Velasquez R, Bahia H (2011) Measuring the effect of moisture on asphalt–aggregate bond with the bitumen bond strength test. Transp Res Rec 2209:70–81. doi:10.3141/2209-09

    Article  Google Scholar 

  3. Kanitpong K, Bahia HU (2003) Role of adhesion and thin film tackiness of asphalt binders in moisture damage of HMA. J Assoc Asphalt Paving Technol 72:502–528

    Google Scholar 

  4. Terrel RL, Shute JW (1989) Summary report on water sensitivity. SHRP-A/IR-89-003, Strategic Highway Research Program NRC

  5. Hefer AW (2005) Adhesion in bitumen–aggregate systems and quantification of the effect of water on the adhesive bond. Texas A&M University, College Station

    Google Scholar 

  6. Varveri A, Zhu J, Kringos N (2015) Moisture damage in asphaltic mixtures. In: Huang S-C, Benedetto HD (eds) Advances in asphalt materials. Woodhead Publishing, Oxford, pp 303–344. doi:10.1016/B978-0-08-100269-8.00010-6

    Chapter  Google Scholar 

  7. Hicks RG (1991) Moisture damage in asphalt concrete. NCHRP Synthesis of Highway Practice, Transportation Research Board, Washington, DC, United States

    Google Scholar 

  8. dos Santos S Nano/micro-structures on bituminous surfaces due to molecular self-assembly. In: 2014 MRS Spring meeting, San Francisco, California, 21–25 April 2014. Cambridge University Press

  9. Cheng D, Little DN, Lytton RL, Holste JC (2002) Use of surface free energy properties of the asphalt–aggregate system to predict moisture damage potential. J Assoc Asphalt Paving Technol 71:59–88

    Google Scholar 

  10. Poulikakos LD, Tiwari MK, Partl MN (2013) Analysis of failure mechanism of bitumen films. Fuel 106:437–447. doi:10.1016/j.fuel.2012.11.060

    Article  Google Scholar 

  11. dos Santos S, Partl MN, Poulikakos LD (2014) Newly observed effects of water on the microstructures of bitumen surface. Constr Build Mater 71:618–627. doi:10.1016/j.conbuildmat.2014.08.076

    Article  Google Scholar 

  12. Hossain MI, Tarefder RA (2014) Quantifying moisture damage at mastic–aggregate interface. Int J Pavement Eng 15(2):174–189

    Article  Google Scholar 

  13. Kanitpong K (2005) Evaluation of the roles of adhesion and cohesion properties of asphalt binders in moisture damage of HMA. University of Wisconsin-Madison, Madison

    Google Scholar 

  14. Wang H, Lin E, Xu G (2015) Molecular dynamics simulation of asphalt–aggregate interface adhesion strength with moisture effect. Int J Pavement Eng. doi:10.1080/10298436.2015.1095297

    Google Scholar 

  15. Kringos N (2007) Modeling of combined physical–mechanical moisture induced damage in asphaltic mixes. Delft University of Technology, Delft

    Google Scholar 

  16. Huurman M, Mo LT (2007) Fatigue in mortar and adhesive zones; measurements, test interpretation and determination of model parameters. Report 7-07-170-2, Delft University of Technology, Delft, The Netherlands

  17. Mo L, Huurman M, Wu S, Molenaar AAA (2009) Ravelling investigation of porous asphalt concrete based on fatigue characteristics of bitumen–stone adhesion and mortar. Mater Des 30(1):170–179. doi:10.1016/j.matdes.2008.04.031

    Article  Google Scholar 

  18. Wang D, Yi J, Feng D (2014) Modelling and laboratory studies on the adhesion fatigue performance for thin-film asphalt and aggregate system. Sci World J 2014:7. doi:10.1155/2014/819083

    Google Scholar 

  19. Wen H, Wang J, Shen S, Ma Z (2010) Modeling the effects of temperature and loading rate on fatigue property of asphalt binder. J Test Eval 38(6):1–6. doi:10.1520/JTE102806

    Google Scholar 

  20. Zhu XY, Yang ZX, Guo XM, Chen WQ (2011) Modulus prediction of asphalt concrete with imperfect bonding between aggregate–asphalt mastic. Compos B 42(6):1404–1411. doi:10.1016/j.compositesb.2011.05.023

    Article  Google Scholar 

  21. Zhu XY, Wang XF, Yu Y (2014) Micromechanical creep models for asphalt-based multi-phase particle-reinforced composites with viscoelastic imperfect interface. Int J Eng Sci 76:34–46. doi:10.1016/j.ijengsci.2013.11.011

    Article  Google Scholar 

  22. Zhu XY, Chen L (2012) Numerical prediction of elastic modulus of asphalt concrete with imperfect bonding. Constr Build Mater 35:45–51. doi:10.1016/j.conbuildmat.2011.12.059

    Article  Google Scholar 

  23. Dong MS, Gao YM, Li LL, Wang LN, Sun ZB (2016) Viscoelastic micromechanical model for dynamic modulus prediction of asphalt concrete with interface effects. J Cent South Univ 23(4):926–933. doi:10.1007/s11771-016-3140-y

    Article  Google Scholar 

  24. López C, Carol I, Aguado A (2008) Meso-structural study of concrete fracture using interface elements. I: numerical model and tensile behavior. J Mech Mater Struct 41(3):583–599. doi:10.1617/s11527-007-9314-1

    Article  Google Scholar 

  25. Dong ZJ, Gong XB, Zhao LD, Zhang L (2014) Mesostructural damage simulation of asphalt mixture using microscopic interface contact models. Constr Build Mater 53:665–673. doi:10.1016/j.conbuildmat.2013.11.109

    Article  Google Scholar 

  26. Ziaei-Rad V, Nouri N, Ziaei-Rad S, Abtahi M (2012) A numerical study on mechanical performance of asphalt mixture using a meso-scale finite element model. Finite Elem Anal Des 57:81–91. doi:10.1016/j.finel.2012.03.004

    Article  Google Scholar 

  27. Rimsa V, Kacianauskas R, Sivilevicius H (2014) Numerical analysis of asphalt mixture and comparison with physical marshall test. J Civ Eng Manag 20(4):570–580. doi:10.3846/13923730.2014.920413

    Article  Google Scholar 

  28. Wang H, Wang J, Chen J (2014) Micromechanical analysis of asphalt mixture fracture with adhesive and cohesive failure. Eng Fract Mech 132:104–119

    Article  Google Scholar 

  29. Hossain MI, Tarefder RA (2014) Quantifying moisture damage at mastic–aggregate interface. Int J Pavement Eng 15(2):174–189. doi:10.1080/10298436.2013.812212

    Article  Google Scholar 

  30. Kim H, Wagoner MP, Buttlar WG (2008) Simulation of fracture behavior in asphalt concrete using a heterogeneous cohesive zone discrete element model. J Mater Civ Eng 20(8):552–563. doi:10.1061/(Asce)0899-1561(2008)20:8(552)

    Article  Google Scholar 

  31. Kim H, Wagoner MP, Buttlar WG (2008) Micromechanical fracture modeling of asphalt concrete using a single-edge notched beam test. J Mech Mater Struct 42(5):677–689. doi:10.1617/s11527-008-9412-8

    Article  Google Scholar 

  32. Chen J, Wang LB, Huang XM (2012) Micromechanical modeling of asphalt concrete fracture using a user-defined three-dimensional discrete element method. J Cent South Univ 19(12):3595–3602. doi:10.1007/s11771-012-1447-x

    Article  Google Scholar 

  33. Poulikakos LD, Partl MN (2011) Micro scale tensile behaviour of thin bitumen films. Exp Mech 51(7):1171–1183. doi:10.1007/s11340-010-9434-3

    Article  Google Scholar 

  34. Khattak MJ, Baladi GY, Drzal LT (2007) Low temperature binder-aggregate adhesion and mechanistic characteristics of polymer modified asphalt mixtures. J Mater Civ Eng 19(5):411–422. doi:10.1061/(ASCE)0899-1561(2007)19:5(411)

    Article  Google Scholar 

  35. Canestrari F, Cardone F, Graziani A, Santagata FA, Bahia HU (2010) Adhesive and cohesive properties of asphalt–aggregate systems subjected to moisture damage. Road Mater Pavement 11(sup1):11–32

    Article  Google Scholar 

  36. Fini EH, Al-Qadi IL (2011) Development of a pressurized blister test for interface characterization of aggregate highly polymerized bituminous materials. J Mater Civ Eng 23(5):656–663. doi:10.1061/(Asce)Mt.1943-5533.0000222

    Article  Google Scholar 

  37. Raab C, Partl MN, Abd EI Halim AO (2012) Experimental investigation of moisture damage in asphalt. Int J Pavement Res Technol 5(3):133–141

    Google Scholar 

  38. Raab C, Partl MN, Abd El Halim AO (2012) Effect of moisture on interlayer bonding of asphalt pavements. In: Paper presented at the 7th international conference on maintenance and rehabilitation of pavements and technological control, Auckland, New Zealand, August 28–30

  39. Hossain MI, Tarefder RA (2015) Behavior of asphalt mastic films under laboratory controlled humidity conditions. Constr Build Mater 78:8–17. doi:10.1016/j.conbuildmat.2014.12.107

    Article  Google Scholar 

  40. Sallehuddin R, Shamsuddin SMH, Hashim SZM (2008) Application of grey relational analysis for multivariate time series. Paper presented at the eighth international conference on intelligent systems design and applications, 26–28 November 2008

  41. Morán J, Granada E, Míguez JL, Porteiro J (2006) Use of grey relational analysis to assess and optimize small biomass boilers. Fuel Process Technol 87(2):123–127. doi:10.1016/j.fuproc.2005.08.008

    Article  Google Scholar 

  42. Hall CA Jr (2007) Introduction to the geology of southern California and its native plants. University of California Press, Berkeley

    Google Scholar 

  43. Aguiarmoya JP, Salazardelgado J, Baldisevilla A, Leivavillacorta F, Loriasalazar L (2015) Effect of aging on adhesion properties of asphalt mixtures with the use of bitumen bond strength and surface energy measurement tests. Transp Res Rec 2505:57–65. doi:10.3141/2505-08

    Article  Google Scholar 

  44. Lesueur D (2009) The colloidal structure of bitumen: Consequences on the rheology and on the mechanisms of bitumen modification. Adv Colloid Interface Sci 145(1–2):42–82. doi:10.1016/j.cis.2008.08.011

    Article  Google Scholar 

  45. Krishnamoorthy A, Rajendra Boopathy S, Palanikumar K, Paulo Davim J (2012) Application of grey fuzzy logic for the optimization of drilling parameters for CFRP composites with multiple performance characteristics. Measurement 45(5):1286–1296. doi:10.1016/j.measurement.2012.01.008

    Article  Google Scholar 

  46. Lin SJ, Lu IJ, Lewis C (2007) Grey relation performance correlations among economics, energy use and carbon dioxide emission in Taiwan. Energy Policy 35(3):1948–1955. doi:10.1016/j.enpol.2006.06.012

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial supports from the Natural Science Foundation of Zhejiang Province (LQ14E080006), the National Science Foundation of China (51408550) and the Xinmiao Talent Program of Zhejiang Province (2017R404033).

Funding

This study was funded by the Natural Science Foundation of Zhejiang Province (LQ14E080006), the National Natural Science Foundation of China (51408550) and the Xinmiao Talent Program of Zhejiang Province (2017R404033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Qiu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

An erratum to this article is available at https://doi.org/10.1617/s11527-017-1091-x.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, X., Xiao, S., Yang, Q. et al. Meso-scale analysis on shear failure characteristics of asphalt–aggregate interface. Mater Struct 50, 209 (2017). https://doi.org/10.1617/s11527-017-1075-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-017-1075-x

Keywords

Navigation