Skip to main content
Log in

TC 238-SCM: hydration and microstructure of concrete with SCMs

State of the art on methods to determine degree of reaction of SCMs

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

This paper is the work of working group 2 of the RILEM TC 238-SCM. Its purpose is to review methods to estimate the degree of reaction of supplementary cementitious materials in blended (or composite) cement pastes. We do not consider explicitly the wider issues of the influence of SCMs on hydration kinetics, nor the measurement of degree of reaction in alkali activated materials. The paper categorises the techniques into direct methods and indirect methods. Direct methods attempt to measure directly the amount of SCM remaining at a certain time, such as selective dissolution, microscopy combined with image analysis, and NMR. Indirect methods infer the amount of SCM reacted by back calculation from some other measured quantity, such as calcium hydroxide consumption. The paper first discusses the different techniques, how they operate and the advantages and limitations along with more details of case studies on different SCMs. In the second part we summarise the most suitable approaches for each SCM, and the paper finishes with conclusions and perspectives for future work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Notes

  1. This value assumes the formula Mg5Al2(OH)14(CO3) and should be adjusted accordingly if the hydrotalcite composition is believed to be different.

References

  1. Antoni M, Rossen J, Martirena F, Scrivener K (2012) Cement substitution by a combination of metakaolin and limestone. Cem Concr Res 42(12):1579–1589. doi:10.1016/j.cemconres.2012.09.006

    Article  Google Scholar 

  2. Antiohos SK, Papadakis VG, Chaniotakis E, Tsimas S (2007) Improving the performance of ternary blended cements by mixing different types of fly ashes. Cem Concr Res 37(6):877–885

    Article  Google Scholar 

  3. Aranda M, De la Torre ÁG, León-Reina L (2012) Rietveld quantitative phase analysis of OPC clinkers, cements and hydration products. Rev Mineral Geochem 74:169–209

    Article  Google Scholar 

  4. ASTM C1608 (2007) Standard test method for chemical shrinkage of hydraulic cement paste. ASTM International, West Conshohocken

  5. Baquerizo LG, Matschei T, Scrivener KL, Saedipour M, Wadsö L (2015) Hydration states of AFm cement phases. Cem Concr Res (in press)

  6. Baert G (2009) Physico-chemical interactions in Portland cement—(high volume) fly ash binders. Ph.D. study, Ghent University (ISBN: 978-90-8578-298-8)

  7. Ben Haha M, De Weerdt K, Lothenbach B (2010) Quantification of the degree of reaction of fly ash. Cem Concr Res 40(11):1620–1629

    Article  Google Scholar 

  8. Bergold ST, Goetz-Neunhoeffer F, Neubauer J (2013) Quantitative analysis of C–S–H in hydrating alite pastes by in situ XRD. Cem Concr Res 53:119–126. doi:10.1016/j.cemconres.2013.06.001

    Article  Google Scholar 

  9. Berodier E, Scrivener KL (2014a) Understanding the filler effect on the nucleation and growth of C–S–H. J Am Ceram Soc 97(12):3764–3773

    Article  Google Scholar 

  10. Berodier E, Scrivener KL (2014b) Evolution of pore structure in blended systems. Cem Concr Res (submitted)

  11. Brough AR, Atkinson A (2000) Automated identification of the aggregate–paste interfacial transition zone in mortars of silica sand with Portland or alkali-activated slag cement paste. Cem Concr Res 30(6):849–854

    Article  Google Scholar 

  12. Brough AR, Atkinson A (2002) Sodium silicate-based, alkali-activated slag mortars: part I. Strength, hydration and microstructure. Cem Concr Res 32(6):865–879

    Article  Google Scholar 

  13. Cassagnabère F, Mouret M, Escadeillas G (2009) Early hydration of clinker–slag–metakaolin combination in steam curing conditions, relation with mechanical properties. Cem Concr Res 39:1164–1173

    Article  Google Scholar 

  14. Chen W (2006) Hydration of slag cement—theory, modeling and application. Ph.D. study, University of Twente

  15. Cheng-yi H, Feldman RF (1985) Hydration reactions in Portland cement-silica fume blends. Cem Concr Res 15:585–592

    Article  Google Scholar 

  16. Copeland LE, Kantro DL (1960) Chemistry of hydration of Portland cement. Proceedings of 4th international Symposium Chemistry of Cement. Cement and Concrete Association, Washington

  17. Costoya (2008) Effect of particle size on the hydration kinetics and microstructural development of tricalcium silicate. Thèse EPFL, no. 4102

  18. Cyr M, Lawrence P, Ringot E (2005) Mineral admixtures in mortars: quantification of the physical effects of inert materials on short-term hydration. Cem Concr Res 35(4):719–730

    Google Scholar 

  19. Deschner F, Winnefeld F, Lothenbach B, Seufert S, Schwesig P, Dittrich S, Goetz-Neunhoeffer F, Neubauer J (2012) Hydration of a Portland cement with high replacement by siliceous fly ash. Cem Concr Res 42:1389–1400

    Article  Google Scholar 

  20. Deschner F, Münch B, Winnefeld F, Lothenbach B (2013) Quantification of fly ash in hydrated, blended Portland cement pastes by back-scattered electron imaging. J Microsc 251(2):188–204

    Article  Google Scholar 

  21. DIN (German Institute for Standardisation) Technical Report CEN/TR 196-4: Prüfverfahren für Zement—Teil 4: quantitative Bestimmung der Bestandteile (Test methods for cement—part 4: quantitative determination of constituents). November 2007

  22. Dobson CM, Goberdhan DGC, Ramsay JDF, Rodger SA (1988) 29Si MAS NMR study of the hydration of tricalcium silicate in the presence of finely divided silica. J Mater Sci 23(11):4108–4114

    Article  Google Scholar 

  23. Durdziński P, Dunant CF, Ben Haha M, Scrivener KL (2015) Identification of different glasses in calcareous fly ash and quantification of their degree of reaction in Portland-fly ash composite cements. Cem Concr Res (submitted)

  24. Dyson HM, Richardson IG, Brough AR (2007) A combined 29Si MAS NMR and selective dissolution technique for the quantitative evaluation of hydrated blast furnace slag cement blends. J Am Ceram Soc 90(2):598–602

    Article  Google Scholar 

  25. European S (1986) Methods of testing cements: quantitative determination of constituents. European Committee for Standardization, Brussels

    Google Scholar 

  26. Escalante-Garcia JI (2003) Nonevaporable water from neat OPC and replacement materials in composite cements hydrated at different temperatures. Cem Concr Res 33:1883–1888

    Article  Google Scholar 

  27. Fernández-Jiménez A, de la Torre AG, Palomo A, López-Olmo G, Alonso MM, Aranda MAG (2006) Quantitative determination of phases in the alkaline activation of fly-ash. Part II: degree of reaction. Fuel 85(14–15):1960–1969

    Article  Google Scholar 

  28. Gallucci E, Zhang X, Scrivener K (2013) Effect of Temperature on the microstructure of calcium silicate hydrate (C–S–H). Cem Concr Res 53:185–195

    Article  Google Scholar 

  29. Geiker M (1983) Studies of Portland cement hydration: measurements of chemical shrinkage and a systematic evaluation of hydration curves by means of the dispersion model. Ph.D. study, Technical University of Denmark, Copenhagen

  30. Goguel R (1995) A new consecutive dissolution method for the analysis of slag cements. Cem Concr Aggreg J 17(1):84–91

    Article  Google Scholar 

  31. Grün R, Kunze G (1925a) Messung der latenten Energie von Hochofensschlacken und von Einzelkomponenten des Dreistoffsystems Kieselsaüre-Kalk-Tonerde-2. Zement

  32. Grün R, Kunze G (1925b) Messung der latenten Energie von Hochofensschlacken und von Einzelkomponenten des Dreistoffsystems Kieselsaüre-Kalk-Tonerde-1. Zement

  33. Gruskovnjak A, Lothenbach B, Winnefeld F, Münch B, Ko SC, Adler M, Mäder U (2011) Quantification of hydration phases in super sulphated cements: review and new approaches. Adv Cem Res 23(6):265–275

    Article  Google Scholar 

  34. Gruyaert E (2011) Effect of blast-furnace slag as cement replacement on hydration, microstructure, strength and durability of concrete. Ph.D. study, Ghent University (ISBN: 978-90-8578-412-8)

  35. Gutteridge WA, Dalziel JA (1990) Filler cement: the effect of the secondary component on the hydration of Portland cement: part I. A fine non-hydraulic filler. Cem Concr Res 20(5):778–782

    Article  Google Scholar 

  36. Halse Y, Goult DJ, Pratt PL (1984) Calorimetry and microscopy of flyash and silica fume cement blends. Br Ceram Proc Issue 35:403–417

    Google Scholar 

  37. Hench LL, Clark DE (1978) Physical chemistry of glass surfaces. J Non-Cryst Solids 28:83–105

    Article  Google Scholar 

  38. Hjorth J, Skibsted J, Jakobsen HJ (1988) 29Si MAS NMR studies of Portland cement components and effects of microsilica on the hydration reaction. Cem Concr Res 18:789–798

    Article  Google Scholar 

  39. Justnes H, Meland I, Bjørgum JO, Krane J (1990) A 29Si MAS NMR study of the pozzolanic activity of condensed silica fume and the hydration of di- and tricalcium silicate. Adv Cem Res 3:111–116

    Article  Google Scholar 

  40. Kishi T, Maekawa K (1994) Thermal and mechanical modelling of young concrete based on hydration process of multi-component cement minerals. Proceedings of the international RILEM symposium on thermal cracking in concrete at early ages, Munich, E&FN Spon, London

  41. Kishi T (2009) Personal communication

  42. Klimesch DS, Ray A (1996) The use of DTA/TGA to study the effects of ground quartz with different surface areas in autoclaved cement: quartz pastes. Part 1: a method for evaluating DTA/TGA results. Thermochim Acta 289:41–54

    Article  Google Scholar 

  43. Kocaba V (2009) Development and evaluation of methods to follow microstructural development of cementitious systems including slags. Thèse EPFL, no. 4523 (2009) http://infoscience.epfl.ch/record/140998/files/EPFL_TH4523.pdf

  44. Kocaba V, Gallucci E, Scrivener KL (2012) Methods for determination of degree of reaction of slag in blended cement pastes. Cem Concr Res 42(3):511–525. doi:10.1016/j.cemconres.2011.11.010

    Article  Google Scholar 

  45. Kourounis S, Tsivilis S, Tsakiridis PE, Papadimitriou GD, Tsibouki Z (2007) Properties and hydration of blended cements with steelmaking slag. Cem Concr Res 37:815–822

    Article  Google Scholar 

  46. León-Reina L et al (2009) Round robin on Rietveld quantitative phase analysis of Portland cements. J Appl Crystallogr 42(5):906–916. doi:10.1107/S0021889809028374

    Article  Google Scholar 

  47. Le Saout G, Kocaba V, Scrivener K (2011) Application of the Rietveld method to the analysis of anhydrous cement. Cem Concr Res 41(2):133–148. doi:10.1016/j.cemconres.2010.10.003

    Article  Google Scholar 

  48. Le Saout G, Ben Haha M, Winnefeld F, Lothenbach B (2012) Hydration degree of alkali activated slags. J Am Ceram Soc 94(12):4541–4547

    Article  Google Scholar 

  49. Li S, Roy DM, Kumar A (1985) Quantatative determination of pozzolanas in hydrated systems of cement or Ca(OH)2 with fly ash or silica fume. Cem Concr Res 15(6):1079–1086

    Article  Google Scholar 

  50. Lothenbach B, Scrivener K, Hooton RD (2011) Supplementary cementitious materials. Cem Concr Res 41(3):217–229

    Article  Google Scholar 

  51. Luke K, Glasser FP (1987) Selective dissolution of hydrated blast furnace slag cements. Cem Concr Res 17(2):273–282

    Article  Google Scholar 

  52. Lumley JS, Gollop RS, Moir GK, Taylor HFW (1996) Degrees of reaction of the slag in some blends with Portland cement. Cem Concr Res 26(1):139–151

    Article  Google Scholar 

  53. Massazza F (1998) Pozzolana and Pozzolanic cements, chapter 10 in Lea’s chemistry of cement and concrete, 3rd edn. EdPC, Hewlett, Arnold

    Google Scholar 

  54. Mounanga P, Khelidj A, Loukili A, Baroghel-Bouny V (2004) Predicting Ca(OH)2 content and chemical shrinkage of hydrating cement pastes using analytical approach. Cem Concr Res 34:225–265

    Article  Google Scholar 

  55. Myers N, Berodier E, Scrivener KL (2011) Nanocem internal study, unpublished

  56. Ohsawa S, Asaga K, Goto S, Daimon M (1985) Quantitative determination of fly ash in the hydrated fly ash—CaSO4·2H2O–Ca(OH)2 system. Cem Concr Res 15(2):357–366

    Article  Google Scholar 

  57. Oelkers EH, Golubev SV, Chairat C, Pokrovsky OS, Schott J (2009) The surface chemistry of multi-oxide silicates. Geochim Cosmochim Acta 73:4617–4634

    Article  Google Scholar 

  58. Pane I, Hansen W (2005) Investigation of blended cement hydration by isothermal calorimetry and thermal analysis. Cem Concr Res 35(6):1155–1164

    Article  Google Scholar 

  59. Poulsen SL (2009) Methodologies for measuring the degree of reaction in Portland cement blends with supplementary cementititous materials by 29Si and 27Al MAS NMR spectroscopy, Ph.D. thesis, Aarhus University

  60. Poulsen SL, Kocaba V, Le Saoût G, Jakobsen HJ, Scrivener KL, Skibsted J (2009a) Improved quantification of alite and belite in anhydrous Portland cements by 29Si MAS NMR: Effects of paramagnetic ions. Solid State Nucl Magn Reson 36:32–44

    Article  Google Scholar 

  61. Poulsen SL, Jakobsen HJ Skibsted J (2009b) Methodologies for measuring the degree of reaction in Portland cement blends with supplementary cementitious materials by 27Al and 29Si MAS NMR spectroscopy. Proceedings of the 17th IBAUSIL—Internationale Baustofftagung, Weimar, Germany, vol I, pp 177–188

  62. Rossen JE (2014) Composition and morphology of C–A–S–H in pastes of alite and cement blended with supplementary cementitious materials. Thèse EPFL, no. 6294 (2014), http://infoscience.epfl.ch/record/200219/files/EPFL_TH6294.pdf

  63. Scarlett NVY, Madsen IC (2006) Quantification of phases with partial or no known crystal structures. Powder Diffr 21(4):278–284. doi:10.1154/1.2362855

    Article  Google Scholar 

  64. Scrivener KL, Patel HH, Pratt PL, Parrott LJ (1987) Analysis of phases in cement paste using backscattered electron images, methanol adsorption and thermogravimetric analysis in microstructural development during the hydration of cement. Proc Mater Res Soc Symp 85:67–76

    Article  Google Scholar 

  65. Scrivener KL (2004) Backscattered electron imaging of cementitious microstructures: understanding and quantification. Cement Concr Compos 26(8):935–945

    Article  Google Scholar 

  66. Scrivener KL, Füllmann T, Gallucci E, Walenta G, Bermejo E (2004) Quantitative study of Portland cement hydration by X-ray diffraction/rietveld analysis and independent methods. Cem Concr Res 34(9):1541–1547. doi:10.1016/j.cemconres.2004.04.014

    Article  Google Scholar 

  67. Sevelsted TF, Herfort D, Skibsted J (2013) 13C chemical shift anisotropies for carbonate ions in cement minerals and the use of 13C, 27Al and 29Si MAS NMR in studies of Portland cement including limestone additions. Cem Concr Res 52:100–111

    Article  Google Scholar 

  68. Skibsted J, Andersen MD, Jakobsen HJ (2007) Applications of solid-state nuclear magnetic resonance (NMR) in studies of Portland cement-based materials. Zement Kalk Gips 60(6):70–83

    Google Scholar 

  69. Skibsted J (2014) Unpublished results

  70. Snellings R, Mertens G, Cizer Ö, Elsen J (2010) Early age hydration and pozzolanic reaction in natural zeolite blended cements: reaction kinetics and products by in situ synchrotron X-ray powder diffraction. Cem Concr Res 40(12):1704–1713

    Article  Google Scholar 

  71. Snellings R (2013) Solution-controlled dissolution of supplementary cementitious material glasses at pH 13: The effect of solution composition on glass dissolution rates. J Am Ceram Soc 96:2467–2475

    Article  Google Scholar 

  72. Snellings R, Salze A, Scrivener KL (2014) Use of X-ray diffraction to quantify amorphous supplementary cementitious materials in anhydrous and hydrated blended cements. Cem Concr Res 64:89–98

    Article  Google Scholar 

  73. Suprenant BA, Papadopoulos G (1991) Selective dissolution of Portland—fly ash cements. J Mater Civ Eng 3(1):48–59

    Article  Google Scholar 

  74. Taylor HFW (1962) Hydrothermal reactions in the system CaO–SiO2–H2O and the steam curing of cement and cement-silica products. In: Proceedings of the 4th international symposium on the chemistry of cement, Washington D.C., 3: 167–190.

  75. Taylor HFW (1997) Cement chemistry. Thomas Telford, London

    Book  Google Scholar 

  76. Tixier R, Devaguptapu R, Mobasher B (1997) The effect of copper slag on the hydration and mechanical properties of cementitious mixtures. Cem Concr Res 27(10):1569–1580

    Article  Google Scholar 

  77. Vollpracht A, Nebel H, Brameshuber W (2010a) Investigation on the effectiveness of ground granulated blast furnace slag additive in concrete. Bagneux: RILEM. In: Brameshuber W (ed) Proceedings of the international RILEM conference on materials sc ience (MatSci), vol III: additions improving properties of concrete (AdIPoC), Aachen, Germany (ISBN 978-2-35158-110-0).

  78. Vollpracht A, Brameshuber W (2010b) Investigations on ten years old hardened cement paste samples. Bagneux: RILEM. In: Brameshuber W (ed) Proceedings of the international RILEM conference on materials science (MatSci), vol III: additions improving properties of concrete (AdIPoC), Aachen (ISBN 978-2-35158-110-0): 79–91

  79. Wang KS, Lin KL, Lee TY, Tzeng BY (2004) The hydration characteristics when C2S is present in MSWI fly ash slag. Cement Concr Compos 26:323–330

    Article  Google Scholar 

  80. Williams RP, Hart RD, van Riessen A (2011) Quantification of the extent of reaction of metakaolin-based geopolymers using X-ray diffraction, scanning electron microscopy, and energy-dispersive spectroscopy. J Am Ceram Soc 94(8):2663–2670. doi:10.1111/j.1551-2916.2011.04410.x

    Article  Google Scholar 

Download references

Acknowledgments

This paper has been compiled by working group 2 of the RILEM TC-238 SCM. The authors like to thank all TC 238-SCM members for the helpful discussions and their suggestions to this document. In particular, the authors wish to acknowledge the contribution of John Provis and Luis Pedro Esteves to this work and wish to thank Maria Juenger, Winnie Matthes and Doug Hooton for their insightful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen L. Scrivener.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scrivener, K.L., Lothenbach, B., De Belie, N. et al. TC 238-SCM: hydration and microstructure of concrete with SCMs. Mater Struct 48, 835–862 (2015). https://doi.org/10.1617/s11527-015-0527-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-015-0527-4

Keywords

Navigation