Skip to main content
Log in

Withdrawal resistance of self-tapping screws in unidirectional and orthogonal layered timber products

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Self-tapping screws placed in timber show a high load-carrying capacity if stressed in axial direction. They are widely used in contemporary engineered timber structures, e.g. for joining of linear members like solid timber or glued laminated timber (glulam) and in plane elements like cross laminated timber. In doing so, an influence on the withdrawal capacity by the number and orientation of layers penetrated by the screw can be assumed. Current standards regulate the withdrawal resistance of screws placed in timber (products) only as a function of the product’ characteristic density. We propose to treat the withdrawal strength f ax as a function of (i) the density of the base material and (ii) the number of layers penetrated by the screw. Therefore a stochastic model approach is defined, based on the assumption that the layer involved with the highest density governs the withdrawal resistance of the screw. For verification, results of several withdrawal test series, performed on unidirectional and orthogonal layered specimens with a number of layers N = 1, 2, 3, 5, 6, 10 and 20, get used. Congruent to the model an increase of the withdrawal resistance with N was observed on mean as well as on 5 %-quantiles, whereas the orientation of layers showed a clear but insignificant trend. For a number of layers relevant in practice (N = 3–7) an increase of 7–25 % on the 5 %-quantile of f ax observed in single layer is given. Additional to the discussed uncertainties in the model, in fact a deeper understanding of the behaviour of self-tapping screws placed in layered timber products can be provided. The results may give support to further developments and optimisation of screw joints and the possibility to consider quantitatively more economic withdrawal strength of screws if more than one layer of a timber product is penetrated by the thread.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bakht B, Jaeger LG (1991) Load sharing in timber bridge design. Can J Civ Eng 18:312–319

    Article  Google Scholar 

  2. Blaß HJ, Bejtka I, Uibel T (2006) Tragfähigkeit von Verbindungen mit selbstbohrenden Holzschrauben mit Vollgewinde, Bd. 4. Karlsruher Berichte zum Ingenieurholzbau. Universitätsverlag Karlsruhe, Karlsruhe

  3. Blaß HJ, Uibel T (2007) Bemessungsvorschläge von Verbindungsmittel in Brettsperrholz. Lehrstuhl für Ingenieurholzbau und Baukonstruktionen. Universität Karlsruhe, Karlsruhe

  4. Bohnhoff DR (1995) Mechanically laminated post engineering practice. In: Research and technology, FBN, pp 36–39

  5. Brandner R, Schickhofer G (2006) System effects of structural elements: determined for bending and tension. In: 9th World conference on timber engineering (WCTE), Portland, Oregon, 8pp

  6. Brandner R (2013) Stochastic system actions and effects in engineered timber products and structures. In: Schickhofer G, Brandner R (eds) Timber engineering and technology, vol 2. Monographic series TU Graz. Verlag der Technischen Universität Graz, ISBN 978-3-85125-263-7

  7. Brandner R, Gatternig W, Schickhofer G (2012) Determination of shear strength of structural and glued laminated timber. In: International council for research and innovation in building and construction. Working Commission W18—Timber Structures, CIB-W18/45-12-2, Växjö, Sweden

  8. Daniels HE (1945) The statistical theory of the strength of bundles of threads: I. Proc R Soc A 183:405–435

    Article  MATH  MathSciNet  Google Scholar 

  9. DIN 571 (2010) Hexagon head wood screws

  10. DIN 7998 (1975) Threads and thread ends for wood screws

  11. EN 338 (2009) Structural timber—strength classes

  12. EN 1194 (1999) Timber structures—glued laminated timber. Strength classes and determination of characteristic values

  13. EN 1382 (1999) Timber structures—test methods—withdrawal capacity of timber fasteners

  14. EN 1995-1-1 (2009) Design of timber structures—part 1-1: general—common rules and rules for buildings

  15. ETA-12/0373 (2012) Schmid screws RAPID, STARDRIVE and SP—self-tapping screws for use in timber constructions. Österreichisches Institut für Bautechnik, November 2012

  16. ETA-12/0114 (2012) SPAX self-tapping screws. ETA-Danmark A/S, September 2012

  17. Frese M, Fellmoser P, Blaß HJ (2010) Modelle für die Berechnung der Ausziehtragfähigkeit von selbstbohrenden Holzschrauben. Eur J Wood Wood Prod 68(4):373–384

    Article  Google Scholar 

  18. Glos P, Denzler JK (2003) Characteristic shear strength values based on tests according to EN 1193. CIB-W18/36-6-1, Colorado, USA

  19. Harlow DG, Smith RL, Taylor HM (1983) Lower tail analysis of the distribution of the strength of load-sharing systems. J Appl Probab 20(2):358–367

    Article  MATH  MathSciNet  Google Scholar 

  20. Hidalgo RC, Moremo Y, Kun F, Herrmann HJ (2002) Fracture model with variable range of interaction. Phys Rev E 65(046148):1–8

    Google Scholar 

  21. Jensen LJ, Nakatani M, Quenneville P, Walford B (2010) A simple unifed model for withdrawal of lag screws and glued-in rods. Eur J Wood Wood Prod. doi:10.1007/s00107-010-0478-y

  22. Phoenix SL, Ibnabdeljalil M, Hui CY (1997) Size effects in the distribution for strength of brittle matrix fibrous composites. Int J Solids Struct 34(5):545–568

    Article  MATH  Google Scholar 

  23. Pirnbacher G, Brandner R, Schickhofer G (2009) Base parameters of self-tapping screws. 42nd CIB-W18 meeting, paper 42-7-1, Duebendorf, Switzerland

  24. Pörtner C (2005) Untersuchungen zum Verbund zwischen eingeklebten stiftförmigen faserverstärkten Kunststoffen und Holz. Dissertation, University of Kassel

  25. EN 14080 (2013) Timber structures—glued laminated timber and solid timber—requirements

  26. R Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0. http://www.R-project.org/

  27. Rammer DR, Soltis LA, Lebow PK (1996) Experimental shear strength of unchecked solid-sawn Douglas fir. United States Department of Agriculture, Forest Products Laboratory, FPL-RP-533, Madison, WI

  28. Reichelt B (2012) Einfluss der Sperrwirkung auf den Ausziehwiderstand selbstbohrender Holzschrauben. Master Thesis, Graz University of Technology, Graz

  29. Ringhofer A, Brandner R (2012) Einfluss der Anzahl und Orientierung der Schichten auf das Ausziehtragverhalten selbstbohrender Holzschrauben in Brettsperrholz. 18. Internationales Holzbau-Forum 2012. Garmisch-Partenkirchen, Germany

  30. Ringhofer A, Mahlknecht U, Schickhofer G (2013) Optimierung der Schraube hinsichtlich des Kraftflusses in Verbindungen im Ingenieurholzbau. Final report FFG-project SCREWS, Jannuary 2013

  31. Ringhofer A, Schickhofer G (2013) Investigations concerning the force distribution along axially loaded self-tapping screws. In: RILEM international symposium on materials and joints in timber structures: recent advancement of technology, Stuttgart, Germany, October 2013

  32. Riyanto DS (1996) Comparative test methods for evaluating shear strength of structural timber. Oregon State University, Corvallis

    Google Scholar 

  33. Schickhofer G (2001) Determination of shear strength values for GLT using visual and machine graded spruce laminations. CIB-W18/34-12-6, Venice, Italy

  34. Sexsmith RG, Boyle PD, Rovner B, Abbott RA (1979) Load sharing in vertically laminated, post-tensioned bridge decking. Technical report no. 6. Forintek Canada Corporation, Western Forest Products Laboratory, Vancouver, British Columbia, ISSN 0708-6172, 18pp

  35. Smith RL (1983) Limit theorems and approximations for the reliability of load-sharing systems. Adv Appl Probab 15(2):304–330

    Article  MATH  Google Scholar 

  36. Sutherland LS, Shenoi RA, Lewis SM (1999) Size and scale effects in composites: I. Literature review. Compos Sci Technol 59:209–220

    Article  Google Scholar 

  37. Vangel MG (1996) Distribution of the coefficient of variation and the extended ‘t’ distribution. Am Stat 50:21–26

    MathSciNet  Google Scholar 

  38. Volkersen O (1953) Die Schubkraftverteilung in Leim-, Niet- und Bolzenverbindungen. Energie und Technik. Part 1–3

  39. Weibull W (1939a) A statistical theory of the strength of materials. IVA, Handling Nr. 151, Royal Swedish Institute for Engineering Research

  40. Weibull W (1939b) The phenomenon of rupture in solids. IVA, Handling Nr. 153, Royal Swedish Institute for Engineering Research

  41. Zweben C, Rosen BW (1970) A statistical theory of material strength with application to composite materials. J Mech Phys Solids 18:189–206

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ringhofer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ringhofer, A., Brandner, R. & Schickhofer, G. Withdrawal resistance of self-tapping screws in unidirectional and orthogonal layered timber products. Mater Struct 48, 1435–1447 (2015). https://doi.org/10.1617/s11527-013-0244-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-013-0244-9

Keywords

Navigation