Skip to main content
Log in

Determination of CaCO3 and SiO2 content in the binders of historic lime mortars

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The binders of historic mortars composed of small grain sized silica (SiO2) and carbonated lime (CaCO3) are considered as the main part that give hydraulic character and high strength to the mortar. In this study, FTIR, SEM–EDS, LIBS and XRD spectroscopy were used to find out the weight ratios of CaCO3 to SiO2 in the binders of historic lime mortars. For this purpose, a series of pure calcium carbonate and silica mixture were prepared in ten combinations in varying ratios from 0.5 to 5. Calibration curve was prepared for each analysis by plotting the peak area or intensity ratios of CaCO3 to SiO2 versus the weight ratios of CaCO3 to SiO2. A good linear correlation coefficient was obtained for each analysis respectively. The analyses were then tested on the binder of the Roman mortar samples. The results indicated that FTIR, SEM–EDS and LIBS spectroscopy are convenient tools to determine the weight ratios of CaCO3 to SiO2 in the binders of mortars. But XRD spectroscopy is not convenient for quantitative analysis of binders due to the presence of varied amounts of amorphous or poor crystalline silica in their compositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Adam JP (2005) Roman building materials and techniques. Routledge, London

    Google Scholar 

  2. Aslan Özkaya Ö, Böke H (2009) Properties of Roman bricks and mortars used in Serapis Temple in the city of Pergamon. Mater Charact 60:995–1000. doi:10.1016/j.matchar.2009.04.003

    Article  Google Scholar 

  3. Bakolas A, Biscontin G, Moropoulou A, Zendri E (1995) Characterization of the lumps in the mortars of historic masonry. Thermochim Acta 269–270:809–816. doi:10.1016/0040-6031(95)02573-1

    Article  Google Scholar 

  4. Barba L, Blancas J, Manzanilla LR, Ortiz A, Barca D, Crisci GM, Miriello D, Pecci A (2009) Provenance of the limestone used in Teotihuacan (Mexico): a methodological approach. Archaeometry 51:525–545. doi:10.1111/j.1475-4754.2008.00430.x

    Article  Google Scholar 

  5. Böke H, Akkurt S, Özdemir S, Göktürk EH, Caner Saltik EN (2004) Quantification of CaCO3–CaSO3–0.5H2O–CaSO4–2H2O mixtures by FTIR analysis and its ANN model. Mater Lett 58:723–726. doi:10.1016/j.matlet.2003.07.008

    Article  Google Scholar 

  6. Böke H, Akkurt S, İpekoğlu B, Uğurlu E (2006) Characteristics of brick used as aggregate in historic brick-lime mortars and plasters. Cem Concr Res 36:1115–1122. doi:10.1016/j.cemconres.2006.03.011

    Article  Google Scholar 

  7. Cabrera J, Rojas MF (2001) Mechanism of hydration of the metakaolin–lime–water system. Cem Concr Res 31:177–182

    Article  Google Scholar 

  8. Degryse P, Elsen J, Waelkens M (2002) Study of ancient mortars from Sagalassos (Turkey) in view of their conservation. Cem Concr Res 32:1457–1463

    Article  Google Scholar 

  9. Eckel EC (1928) Cements limes and plasters their materials, manufacture and properties. Wiley, New York

    Google Scholar 

  10. Elsen J (2006) Microscopy of historic mortars—a review. Cem Concr Res 36:1416–1424. doi:10.1016/j.cemconres.2005.12.006

    Article  Google Scholar 

  11. Giakoumaki A, Melessanaki K, Anglos D (2007) Laser-induced breakdown spectroscopy (LIBS) in archaeological science—applications and prospects. Anal Bioanal Chem 387:749–760. doi:10.1007/s00216-006-0908-1

    Google Scholar 

  12. Goldstein J, Newbury DE, Joy DC, Lyman CE, Echlin P, Lifshin E, Sawyer L, Michal JR (2003) Scanning electron microscopy and X-ray microanalysis, 3rd edn. Springer, New York

    Book  Google Scholar 

  13. He C, Osbæck B, Makovicky E (1995) Pozzolanic reactions of six principal clay minerals: activation, reactivity assessments and technological effects. Cem Concr Res 25(8):1691–1702. doi:10.1016/0008-8846(95)00165-4

    Article  Google Scholar 

  14. Jackson MD, Logan JM, Scheetz BE, Deocampo DM, Cawood CG, Marra F, Vitti M, Ungaro L (2009) Assessment of material characteristics of ancient concretes, Grand Aula, Markets of Trajan, Rome. J Archaeol Sci 36:2481–2492. doi:10.1016/j.jas.2009.07.011

    Article  Google Scholar 

  15. Lea FM (1940) Investigations on pozzolanas. Build Res, Tech Paper 27:1–63

  16. Massazza F, Pezzuoli M (1981) Some teaching of a Roman concrete. In: Proceedings of the ICCROM symposium “Mortars, cements and grouts used in the conservation of historic buildings”, Rome, pp 219–248

  17. Middendorf B, Hughes JJ, Callebaut K, Baronio G, Papayianni I (2005) Investigative methods for the characterisation of historic mortars—part 2: chemical characterisation. Mater Struct 38:771–780. doi:10.1617/14282

    Article  Google Scholar 

  18. Middendorf B, Hughes JJ, Callebaut K, Baronio G, Papayianni I (2005) Investigative methods for the characterisation of historic mortars—part 1: mineralogical characterisation. Mater Struct 38:761–769. doi:10.1617/14281

    Article  Google Scholar 

  19. Miriello D, Barca D, Bloise A, Ciarallo A, Crisci GM, De Rose T, Gattusco C, Gazineo F, La Russa MF (2010) Characterisation of archaeological mortars from Pompeii (Campania, Italy) and identification of construction phases by compositional data analysis. J Archaeol Sci 37:2207–2223. doi:10.1016/j.jas.2010.03.019

    Article  Google Scholar 

  20. Miriello D, Bloise A, Crisci GM, Apollaro C, La Marca A (2011) Characterisation of archaeological mortars and plasters from Kyme (Turkey). J Archaeol Sci 38:794–804. doi:10.1016/j.jas.2010.11.002

    Article  Google Scholar 

  21. Moropoulou A, Bakolas A, Aggelakopoulou E (2004) Evaluation of pozzolanic activity of natural and artificial pozzolans by thermal analysis. Thermochim Acta 420:135–140. doi:10.1016/j.tca.2003.11.059

    Article  Google Scholar 

  22. Perkins JBW (1981) Roman imperial architecture. Yale University Press, New Haven

    Google Scholar 

  23. Radziemski LJ, Cremers DA (1989) Laser induced plasmas and applications. Marcel Dekker, New York

    Google Scholar 

  24. Reig FB, Adelantado JVG, Moreno MCMM (2002) FTIR quantitative analysis of calcium carbonate (calcite) and silica (quartz) mixtures using the constant ratio method. Application to geological samples. Talanta 58:811–821

    Article  Google Scholar 

  25. Sánchez-Moral S, Luque L, Cañaveras JC, Soler V, Garcia-Guinea J, Aparicio A (2005) Lime pozzolana mortars in Roman catacombs: composition, structures and restoration. Cem Concr Res 35(8):1555–1565. doi:10.1016/j.cemconres.2004.08.009

    Article  Google Scholar 

  26. Uğurlu E, Böke H (2009) The use of brick-lime plasters and their relevance to climatic conditions of historic bath buildings. Constr Build Mater 23:2442–2450. doi:10.1016/j.conbuildmat.2008.10.005

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the researchers of the Centre for Materials Research at the İzmir Institute of Technology for SEM-EDS and XRD analyses during the experimental stage of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Böke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sağın, E.U., Böke, H., Aras, N. et al. Determination of CaCO3 and SiO2 content in the binders of historic lime mortars. Mater Struct 45, 841–849 (2012). https://doi.org/10.1617/s11527-011-9802-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-011-9802-1

Keywords

Navigation