Hostname: page-component-7c8c6479df-995ml Total loading time: 0 Render date: 2024-03-26T18:16:00.946Z Has data issue: false hasContentIssue false

Sulfentrazone Persistence in Southern Soils: Bioavailable Concentration and Effect on a Rotational Cotton Crop

Published online by Cambridge University Press:  20 January 2017

Christopher L. Main
Affiliation:
Department of Plant Sciences, The University of Tennessee, 252 Ellington Plant Science Building, 2431 Joe Johnson Drive, Knoxville, TN 37996
Thomas C. Mueller*
Affiliation:
Department of Plant Sciences, The University of Tennessee, 252 Ellington Plant Science Building, 2431 Joe Johnson Drive, Knoxville, TN 37996
Robert M. Hayes
Affiliation:
Department of Plant Sciences, The University of Tennessee, 252 Ellington Plant Science Building, 2431 Joe Johnson Drive, Knoxville, TN 37996
John W. Wilcut
Affiliation:
Crop Science Department, North Carolina State University, Raleigh, NC 27695
Thomas F. Peeper
Affiliation:
Plant and Soil Sciences Department, Oklahoma State University, Stillwater, OK 74078
Ronald E. Talbert
Affiliation:
Arkansas Agricultural Experiment Station, Fayetteville, AR 72701
William W. Witt
Affiliation:
Kentucky Agricultural Experiment Station, Lexington, KY 40546
*
Corresponding author's E-mail: tmueller@utk.edu

Abstract

Field studies were conducted from 1998 to 2000 in Tennessee, North Carolina, Arkansas, and Oklahoma to determine the effects of sulfentrazone carryover to a cotton rotational crop from sulfentrazone applied the previous year. Sulfentrazone applied the previous year at 400 g/ha caused no yield loss in Tennessee, >30% yield reduction in Oklahoma, and 20% yield loss in Arkansas and North Carolina. In most experiments in this study, visual evaluations of injury closely correlated with final cotton lint yield (r2 =0.84).

Type
Research
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous. 2002. Spartan herbicide label. EPA Reg. No. 279-3220. Philadelphia, PA: FMC Corp. 11p.Google Scholar
Barnes, C. J. and Lavy, T. L. 1991. Injury and yield response of selected crops to imazaquin and norflurazon residues. Weed Technol. 5:598606.CrossRefGoogle Scholar
Dayan, F. E., Weete, J. D., Duke, S. O., and Hancock, H. G. 1997. Soybean (Glycine max) cultivar differences in response to sulfentrazone. Weed Sci. 45:634641.Google Scholar
Dirks, J. T., Johnson, W. G., Smeda, R. J., Wiebold, W. J., and Massey, R. E. 2000a. Reduced rates of sulfentrazone plus chlorimuron and glyphosate in no-till, narrow-row, glyphosate-resistant Glycine max . Weed Sci. 48:618627.CrossRefGoogle Scholar
Dirks, J. T., Johnson, W. G., Smeda, R. J., Wiebold, W. J., and Massey, R. E. 2000b. Use of preplant sulfentrazone in no-till, narrow-row, glyphosate-resistant Glycine max . Weed Sci. 48:628639.CrossRefGoogle Scholar
Gonzini, L. C., Hart, S. E., and Wax, L. M. 1999. Herbicide combinations for weed management in glyphosate-resistant soybean (Glycine max). Weed Technol. 13:354360.CrossRefGoogle Scholar
Grey, T. L., Walker, R. H., Wehtje, G. R., Adams, J., Dayan, F. E., Weete, J. D., Hancock, H. G., and Kwon, O. 2000. Behavior of sulfentrazone in ionic exchange resins, electrophoresis gels, and cation-saturated soils. Weed Sci. 48:239247.CrossRefGoogle Scholar
Grey, T. L., Walker, R. H., Wehtje, G. R., and Hancock, H. G. 1997. Sulfentrazone adsorption and mobility as affected by soil and pH. Weed Sci. 45:733738.Google Scholar
Hatzios, K. K. 1998. Supplement to Herbicide Handbook. 7th ed. Lawrence, KS: Weed Science Society of America. Pp. 6769.Google Scholar
Johnson, D. H. and Talbert, R. E. 1996. Cotton (Gossypium hirsutum) response to imazaquin and imazethapyr soil residues. Weed Sci. 44:156161.CrossRefGoogle Scholar
Johnson, D. H., Talbert, R. E., and Horton, D. R. 1995. Carryover potential of imazaquin to cotton, grain sorghum, wheat, rice, and corn. Weed Sci. 43:454460.CrossRefGoogle Scholar
Jordan, D. L., Reynolds, D. B., and Crawford, S. H. 1997. Rice (Oryza sativa) response to soil residues of selected herbicides. Weed Technol. 11:379383.CrossRefGoogle Scholar
Niekamp, J. W., Johnson, W. G., and Smeda, R. J. 1999. Broadleaf weed control with sulfentrazone and flumioxazin in no-tillage soybean (Glycine max). Weed Technol. 13:233238.CrossRefGoogle Scholar
Ohmes, G. A., Hayes, R. M., and Mueller, T. C. 2000. Sulfentrazone dissipation in a Tennessee soil. Weed Technol. 14:100105.CrossRefGoogle Scholar
Reddy, K. N. and Locke, M. A. 1998. Sulfentrazone sorption, desorption, and mineralization in soils from two tillage systems. Weed Sci. 46:494500.CrossRefGoogle Scholar
[SAS] Statistical Analysis Systems. 1999. SAS User's Guide (Version 8). Cary, NC: Statistical Analysis Systems Institute. Pp. 20832226.Google Scholar
Vidrine, P. R., Griffin, J. L., Jordan, D. L., and Reynolds, D. B. 1996. Broadleaf weed control in soybean (Glycine max) with sulfentrazone. Weed Technol. 10:762765.CrossRefGoogle Scholar
Wiese, A. F., Bovey, R. W., and Eastin, E. F. 1992. Effect of herbicides on growth of cotton and associated crops. in McWhorter, C. G. and Abernathy, J. R., eds. Weeds of Cotton: Characterization and Control. Memphis, TN: The Cotton Foundation. Pp. 521525.Google Scholar