Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-24T02:10:09.572Z Has data issue: false hasContentIssue false

Detection of Sourgrass (Digitaria insularis) Biotypes Resistant to Glyphosate in Brazil

Published online by Cambridge University Press:  20 January 2017

Leonardo Bianco de Carvalho*
Affiliation:
Department of Applied Biology to Agropecuary, São Paulo State University, Brazil 14884-900
Hugo Cruz-Hipolito
Affiliation:
Department of Agricultural Chemistry and Edaphology, University of Córdoba, Spain 14071
Fidel González-Torralva
Affiliation:
Department of Agricultural Chemistry and Edaphology, University of Córdoba, Spain 14071
Pedro Luis da Costa Aguiar Alves
Affiliation:
Department of Applied Biology to Agropecuary, São Paulo State University, Brazil 14884-900
Pedro Jacob Christoffoleti
Affiliation:
Department of Crop Science, University of São Paulo, Brazil 13418-900
Rafael De Prado
Affiliation:
Department of Agricultural Chemistry and Edaphology, University of Córdoba, Spain 14071
*
Corresponding author's E-mail: agrolbcarvalho@gmail.com

Abstract

Sourgrass is a perennial weed infesting annual and perennial crops in Brazil. Three biotypes (R1, R2, and R3) of sourgrass suspected to be glyphosate-resistant (R) and another one (S) from a natural area without glyphosate application, in Brazil, were tested for resistance to glyphosate based on screening, dose-response, and shikimic acid assays. Both screening and dose-response assays confirmed glyphosate resistance in the three sourgrass biotypes. Dose-response assay indicated a resistance factor of 2.3 for biotype R1 and 3.9 for biotypes R2 and R3. The hypothesis of a glyphosate resistance was corroborated on the basis of shikimic acid accumulation, where the S biotype accumulated 3.3, 5.0, and 5.7 times more shikimic acid than biotypes R1, R2, and R3, respectively, 168 h after treatment with 157.50 g ae ha−1 of glyphosate. There were no differences in contact angle of spray droplets on leaves and spray retention, indicating that differential capture of herbicide by leaves was not responsible for resistance in these biotypes. The results confirmed resistance of sourgrass to glyphosate in Brazil.

Type
Weed Biology and Ecology
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Amrhein, N., Deus, B., Gehrke, P., and Steinrücken, H. C. 1980. The site of the inhibition of the shikimate pathway by glyphosate: II. Interference of glyphosate with chorismate formation in vivo and in vitro. Plant Physiol. 66:830834.CrossRefGoogle ScholarPubMed
Amrhein, N., Johanning, D., Schab, J., and Schulz, A. 1983. Biochemical basis for glyphosate–tolerance in a bacterium and a plant tissue culture. FEBS Lett. 157:191196.CrossRefGoogle Scholar
Chachalis, D., Reddy, K. N., Elmore, C. D., and Steele, M. L. 2001. Herbicide efficacy, leaf structure, and spray droplet contact angle among Ipomoea species and smallflower morningglory. Weed Sci. 49:628634.Google Scholar
Correia, N. M. and Durigan, J. C. 2009. Chemical management of adult Digitaria insularis with glyphosate alone and mixture with chlorimuron–ethyl or quizalofop–p–tefuril in a no–tilled field. Bragantia. 68:689697.Google Scholar
Cruz-Hipolito, H., Osuna, M. D., Heredia, A., Ruiz-Santaella, J. P., and De Prado, R. 2009. Nontarget mechanism involved in glyphosate tolerance found in Canavalia ensiformis plants. J. Agric. Food Chem. 57:48444848.CrossRefGoogle ScholarPubMed
De María, N., Becerril, J. M., García-Plazoala, J. I., Hernández, A., De Felipe, M. R., and Fernández-Pascual, M. 2006. New insights on glyphosate mode of action in nodular metabolism: role of shikimate accumulation. J. Agric. Food Chem. 54:26212628.Google Scholar
Duke, S. O., Baerson, S. R., and Rimando, A. M. 2003. Herbicides: glyphosate. Pages 708869 in Plimmer, J. R., Gammon, D. W., and Ragsdale, N. N., eds. Encyclopedia of Agrochemicals. New York John Wiley. http://onlinelibrary.wiley.com/doi/10.1002/047126363X.agr119/full, Accessed: November 30, 2010.Google Scholar
Duke, S. O. and Powles, S. B. 2008. Glyphosate: a once in a century herbicide. Pest Manag. Sci. 64:319325.Google Scholar
González-Torralva, F., Cruz-Hipolito, H., Bastida, F., Mülleder, N., Smeda, R. J., and De Prado, R. 2010. Differential susceptibility to glyphosate among the Conyza weed species in Spain. J. Agric. Food Chem. 58:43614366.Google Scholar
Gressel, J. 2002. Evolution of resistance to herbicides. Pages 78121 in Gressel, J., ed. Molecular Biology of Weed Control. New York Taylor & Francis.Google Scholar
Harring, T., Streibig, J. C., and Husted, S. 1998. Accumulation of shikimic acid: a technique for screening glyphosate efficacy. J. Agric. Food Chem. 46:44064412.Google Scholar
Heap, I. M. 2010. International Survey of Herbicide-Resistant weeds. http://www.weedscience.org. Accessed: June 6, 2010.Google Scholar
Herrman, K. M. and Weaver, L. M. 1999. The shikimate pathway. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50:473503.CrossRefGoogle Scholar
Jasieniuk, M., Ahmad, R., Sherwood, A. M., Firestone, J. L., Perez-Jones, A., Lanini, W. T., Mallory-Smith, C., and Stednick, Z. 2008. Glyphosate-resistant Italian ryegrass (Lolium multiflorum) in California: distribution, response to glyphosate, and molecular evidence for an altered target enzyme. Weed Sci. 56:496502.Google Scholar
Jaworkski, E. G. 1972. Mode of action of N-phosphonomethyl-glycine: inhibition of aromatic amino acid biosynthesis. J. Agric. Food Chem. 20:11951198.Google Scholar
Kissmann, K. G. 1997. Digitaria insularis . Pages 510513 in Kissmann, K. G., ed. Plantas Infestantes e Nocivas, Tomo I. São Paulo BASF.Google Scholar
Kogan, M. and Perez, A. 2003. Herbicidas. Fundamentos fisiológicos y bioquímicos del modo de acción. Chile EUCC/VCE. 333 p.Google Scholar
Lamego, F. P. and Vidal, R. A. 2008. Resistance to glyphosate in Conyza bonariensis and Conyza canadensis biotypes in Rio Grande do Sul, Brazil. Planta Daninha. 26:467471.Google Scholar
Lee, L. J. and Ngim, J. 2000. A first report of glyphosate-resistant goosegrass (Eleusine indica (L) Gaertn) in Malaysia. Pest Manag. Sci. 56:336339.Google Scholar
Lydon, J. and Duke, S. O. 1988. Glyphosate induction of elevated levels of hydroxybenzoic acids in higher plants. J. Agric. Food. Chem. 36:813818.Google Scholar
Machado, A. F. L., Ferreira, L. R., Ferreira, F. A., Fialho, C. M. T., Tuffi Santos, L. D., and Machado, M. S. 2006. Growth analysis of Digitaria insularis . Planta Daninha. 24:641647.CrossRefGoogle Scholar
Michitte, P., De Prado, R., Espinoza, N., Ruiz-Santaella, J. P., and Gauvrit, C. 2007. Mechanisms of resistance to glyphosate in a ryegrass (Lolium multiflorum) biotype from Chile. Weed Sci. 55:435440.Google Scholar
Mueller, T. C., Ellis, A. T., Beeler, J. E., Sharma, S. D., and Singh, M. 2008. Shikimate accumulation in nine weedy species following glyphosate application. Weed Res. 48:455460.Google Scholar
Neve, P. and Powles, S. B. 2005a. Recurrent selection with reduced herbicide rates results in the rapid evolution of herbicide resistance in Lolium rigidum . Theor. Appl. Genet. 110:11541166.Google Scholar
Neve, P. and Powles, S. B. 2005b. High survival frequencies at low herbicide use rates in populations of Lolium rigidum result in rapid evolution of herbicide resistance. Heredity. 95:485492.Google Scholar
Neve, P., Sadler, J., and Powles, S. B. 2004. Multiple herbicide resistance in a glyphosate-resistant rigid ryegrass (Lolium rigidum) biotype. Weed Sci. 52:920928.Google Scholar
Norsworthy, J. K., Burgos, N. R., and Oliver, L. R. 2001. Differences in weed tolerance to glyphosate involved different mechanisms. Weed Technol. 15:725731.Google Scholar
Perez, A. and Kogan, M. 2003. Glyphosate-resistant Lolium multiflorum in Chilean orchards. Weed Res. 43:1219.Google Scholar
Perez-Jones, A., Park, K. W., Colquhoun, J., Mallory-Smith, C., and Shaner, D. 2005. Identification of glyphosate-resistant Italian ryegrass (Lolium multiflorum) in Oregon. Weed Sci. 53:775779.Google Scholar
Perez-Jones, A., Park, K. W., Polge, N., Colquhoun, J., and Mallory-Smith, C. A. 2007. Investigating the mechanisms of glyphosate resistance in Lolium multiflorum . Planta. 226:395404.Google Scholar
Powles, S. B. 2008. Review. Evolved glyphosate-resistant weeds around the world: lessons to be learnt. Pest Manag. Sci. 64:360365.Google Scholar
Powles, S. B. and Preston, C. 2006. Evolved glyphosate resistance in plants: biochemical and genetic basis of resistance. Weed Tech. 20:282289.Google Scholar
Powles, S. B. and Yu, Q. 2010. Evolution in action: plants resistant to herbicides. Annu. Rev. Plant Biol. 61:317347.Google Scholar
Preston, C., Wakelin, A. M., Dolman, F. C., Bostamam, Y., and Boutsalis, P. 2009. A decade of glyphosate-resistant Lolium around the world: mechanisms, genes, fitness, and agronomic management. Weed Sci. 57:435441.CrossRefGoogle Scholar
Ribeiro, D. N., Gil, D., Cruz-Hipolito, H. E., Ruiz-Santaella, J. P., Christoffoleti, P. J., Vidal, R. A., and De Prado, R. 2008. Rapid assays for detection of glyphosate-resistant Lolium spp. J. Plant Dis. Prot. 21:9599.Google Scholar
Roman, E. S., Vargas, L., Rizzardi, M. A., and Mattei, R. W. 2004. Resistance of Italian ryegrass (Lolium multiflorum) to glyphosate. Planta Daninha. 22:301306.Google Scholar
Siehl, D. L. 1997. Inhibitors of EPSPS synthase, glutamine synthetase and histidine synthesis. Pages 3767 in Roe, R. M., Burton, J. D., and Kuhr, R. J., eds. Herbicide Activity: Toxicology, Biochemistry and Molecular biology. Amsterdam IOS Press.Google Scholar
Singh, B. K. and Shaner, D. L. 1998. Rapid determination of glyphosate injury to plants and identification of glyphosate-resistant plants. Weed Tech. 12:527530.Google Scholar
Timossi, P. C. 2009. Management of Digitaria insularis sprouts under no-till corn cultivation. Planta Daninha. 27:175179.Google Scholar
Timossi, P. C., Leite, G. J., and Durigan, J. C. 2006. Efficacy of glyphosate in cover crops. Planta Daninha. 24:475480.Google Scholar
Vargas, L., Bianchi, M. A., Rizzardi, M. A., Agostinetto, D., and Dal Magro, T. 2007. Conyza bonariensis biotypes resistant to the glyphosate in Southern Brazil. Planta Daninha. 25:573578.Google Scholar
Vargas, L., Roman, E. S., Rizzardi, M. A., and Silva, V. C. 2004. Identification of glyphosate-resistant ryegrass (Lolium multiflorum) biotypes in apple orchards. Planta Daninha. 22:617622.Google Scholar
Vidal, R. A., Michelangelo, M. T., De Prado, R., Ruiz-Santaella, J. P., and Vila-Aiub, M. 2007. Glyphosate-resistant biotypes of wild poinsettia (Euphorbia heterophylla L.) and its risk analysis on glyphosate-tolerant soybeans. Int. J. Food Agric. Environ. 5:265269.Google Scholar
Vila-Aiub, M. M., Balbi, M. C., Gundel, P. E., Ghersa, C. M., and Powles, S. B. 2007. Evolution of glyphosate-resistant johnsongrass (Sorghum halepense) in glyphosate-resistant soybean. Weed Sci. 55:566571.Google Scholar
Wakelin, A. M. and Preston, C. 2006. Inheritance of glyphosate resistance in several populations of rigid ryegrass (Lolium rigidum) from Australia. Weed Sci. 54:212219.Google Scholar