Hostname: page-component-7c8c6479df-ws8qp Total loading time: 0 Render date: 2024-03-30T05:26:09.561Z Has data issue: false hasContentIssue false

Response of Four Cranberry Varieties to Delayed Applications of Dichlobenil

Published online by Cambridge University Press:  20 January 2017

Hilary A. Sandler*
Affiliation:
UMass Cranberry Station, P.O. Box 569, East Wareham, MA 02538
*
Corresponding author's E-mail: hsandler@umext.umass.edu

Abstract

Field studies were conducted in 2009 and 2010 on established commercial cranberry farms in southeastern Massachusetts to evaluate cranberry vine injury and yield with two rates of dichlobenil (1.8 and 2.7 kg ai ha−1) applied at various growth stages starting in mid-May. Four varieties were evaluated: ‘Ben Lear', ‘Early Black', ‘Howes', and ‘Stevens'. Ben Lear vines exhibited leaf-stress symptoms in both years, and Howes and Stevens vines had leaf symptoms in 1 yr. Data indicated that applications made during periods of flower-part development and growth (jewel through bloom) had the highest injury ratings. Growth stage affected injury ratings by variety and dichlobenil rate in 1 out of 2 yr. In all cases, leaf symptoms abated by the end of the season. No effect on yield (wt of fruit per unit area) was detected for any treatment combination on any variety in either year. Data from the present study support pursuit of future studies and can guide management decisions for dodder control to a limited extent. Longer studies are needed to fully evaluate repeated, annual applications of dichlobenil dispensed during periods of rapid growth on cranberry vine development and yield. Further work is also needed to document the practical use of delayed applications of dichlobenil for dodder management.

Se realizaron experimentos de campo en 2009 y 2010 en plantaciones comerciales establecidas de arándano (Vaccinium macrocarpon) en el sureste de Massachusetts para evaluar el daño y el rendimiento en plantas de arándano con dos dosis de dichlobenil (1.8 y 2.7 kg ai ha−1) aplicadas en varios estados de desarrollo iniciando en la mitad de Mayo. Se evaluaron cuatro variedades: 'Ben Lear', 'Early Black', 'Howes' y 'Stevens'. Las plantas de Ben Lear mostraron síntomas de estrés en las hojas en ambos años, y Howes y Stevens tuvieron síntomas foliares solo en un año. Los datos indicaron que las aplicaciones hechas durante períodos de desarrollo y crecimiento de partes florales (joya a apertura de la flor) tuvieron los niveles más altos de daño. El estado de crecimiento afectó las evaluaciones de daño por variedad y dosis de dichlobenil en uno de los dos años. En todos los casos, los síntomas foliares desaparecieron al final de la temporada. No se detectó ningún efecto en el rendimiento (peso o frutas por unidad de área) debido a las combinaciones de tratamientos en ninguna de las variedades en ninguno de los años. Los datos del presente estudio apoyan la realización de futuros estudios y en cierto grado pueden guiar la toma de decisiones para el control de Cuscuta spp. Se necesitan estudios más largos para evaluar ampliamente el efecto de la aplicación anual repetida de dichlobenil durante períodos de rápido crecimiento sobre el desarrollo y rendimiento de la planta de arándano. También se necesita trabajo adicional para documentar el uso práctico de aplicaciones retrasadas de dichlobenil para el manejo de Cuscuta spp.

Type
Weed Management—Other Crops/Areas
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Benvenuti, S., Dinelli, G., Bonetti, A., and Catizone, P. 2005. Germination ecology, emergence and host detection in Cuscuta campestris . Weed Res. 45 :270278.Google Scholar
Bewick, T. A., Binning, L. K., and Dana, M. N. 1988. Post-attachment control of swamp dodder (Cuscuta gronovii) in cranberry (Vaccinium macrocarpon) and carrot (Daucus carota). Weed Technol. 2 :166169.Google Scholar
Bewick, T. A., Binning, L. K., and Dana, M. N. 1989. Control of swamp dodder in cranberry. HortScience 24 :850.Google Scholar
Caruso, F. L. 2008. Cranberry cultivars. Pages 7284 in Sandler, H. A. and DeMoranville, C. J., eds. Cranberry Production: A Guide for Massachusetts. East Wareham, MA : UMass Cranberry Station, CP-08.Google Scholar
Chemtura Corporation. 2011. Casoron 4G. http://www.cdms.net/LDat/ld08U011.pdf. Accessed: December 12, 2011.Google Scholar
Dawson, J. H. 1970. Dodder control in alfalfa with dichlobenil. Weed Sci. 18 :225230.Google Scholar
Demoranville, I. E. and Cross, C. E. 1964. Casoron and weed control in cranberries. Cranberries 29 :1314.Google Scholar
Demoranville, I. E. and Devlin, R. M. 1969. Some effects of dichlobenil on the physiology of cranberries in Massachusetts. Cranberries 33(11) :68.Google Scholar
Devlin, R. M. and Demoranville, I. E. 1968. Influence of dichlobenil on yield, size, and pigmentation of cranberries. Weed Sci. 16 :3839.Google Scholar
Devlin, R. M. and Demoranville, I. E. 1974. Influence of dichlobenil and three experimental herbicides on bud break, terminal growth, and root development of cranberry cuttings. Abstr. Ann. Mtg. Weed Sci. Soc. Amer. 14 :1415.Google Scholar
Devlin, R. M. and Deubert, K. H. 1980. Control of swamp dodder (Cuscuta gronovii) on cranberry bogs with butralin. Proc. Northeast. Weed Sci. Soc. 34 :399405.Google Scholar
[EPA] Environmental Protection Agency. 1998. Dichlobenil. http://www.epa.gov/REDs/factsheets/0263fact.pdf. Accessed: August 23, 2012.Google Scholar
Gaertner, E. E. 1950. Studies of seed germination, seed identification, and host relationships in dodders, Cuscuta spp. Cornell Exp. Sta. Mem. 294 :156.Google Scholar
Gilreath, J. P., Locascio, S. J., and Chase, C. A. 2001. Crop injury from sublethal rates of herbicide, I: tomato. HortScience 36 :669673.Google Scholar
Hou, H.J.M. 2010. Yellow vine syndrome of cranberry in relation to the nutrition imbalance, water stress, and photosynthesis. HortScience 45:485. [Abstract].Google Scholar
Marini, R. P. 2003. Approaches to analyzing experiments with factorial arrangements of treatments plus other treatments. HortScience 38 :117120.Google Scholar
Massachusetts Department of Agricultural Resources Pesticide Board. 2012. Application by aircraft. http://www.mass.gov/agr/legal/regs/333_CMR_13.00.pdf. Accessed: July 25, 2012.Google Scholar
McMurray, G. L., Leidy, R. B., and Monks, D. W. 1996. Clopyralid use in strawberries (Fragaria x ananassa Duch.) grown on plastic mulch. Weed Sci. 44 :350354.Google Scholar
Rice-Mahr, S.E. and Moffitt, L. J. 1994. Biologic and economic assessment of pesticide usage in the cranberry industry. Washington, DC : National Agricultural Pesticide Impact Assessment Program, NAPIAP Report 2-CA-94. USDA. 95 p.Google Scholar
Ristau, R. J. 1996. Dodder: Biology and Management. Colorado State University Cooperative Extension publication 3.112. http://cospl.coalliance.org/fez/view/co:6132. Accessed: August 2, 2012.Google Scholar
Sandler, H. A. 1995. Application of antitranspirant and reduced rate fungicide combinations for fruit rot management in cranberries. Plant Dis. 79 :956961.Google Scholar
Sandler, H. A. 2010. Managing Cuscuta gronovii (swamp dodder) in cranberry requires an integrated approach. Sustainability 2 :660683.Google Scholar
Sandler, H. A. 2011. Weed management. Pages 2142 in Sylvia, M. M., and Guerin, N., eds. Cranberry Chart Book–Management Guide for Massachusetts. East Wareham, MA : UMass Amherst Cranberry Sta.Google Scholar
Sandler, H. A. and Ghantous, K. 2007. Germination patterns of swamp dodder seeds planted near a commercial cranberry farm. Proc. Northeast. Weed Sci. Soc. 61:65. [Abstract].Google Scholar
Sandler, H. A., Mason, J., Autio, W. R., and Bewick, T. A. 2004. Effects of repeat applications of dichlobenil on weed populations and yield components of cranberry (Vaccinium macrocarpon). Weed Technol. 18 :648657.Google Scholar
Sriyani, N., Hopen, H. J., and Binning, L. K. 1991. Oldfield cinquefoil (Potentilla simplex) control in cranberry (Vaccinium macrocarpon). Weed Technol. 5 :297303.Google Scholar
Stevens, O. A. 1957. Weights of seed and numbers per plant. Weeds 5 :4655.Google Scholar
Vencill, W. K. 2002. Herbicide Handbook, 8th ed. Lawrence, KS : Weed Science Society of America. 493 p.Google Scholar
Weather Summaries. 2009; 2010. East Wareham, MA. http://www.umass.edu/cranberry/cropinfo/weather.html. Accessed: August 2, 2012.Google Scholar
Wei, Z., Jeranyama, P., Zhang, F., DeMoranville, C. J., and Hou, H. J. M. 2010. Probing the mechanisms of the yellow vine syndrome development in cranberry: Shade effect. HortScience 45 :13451348.Google Scholar
Zhang, F., Wei, Z., Jeranyama, P., DeMoranville, C. J., and Hou, H. J. M. 2011. A significant loss in photosynthetic activity associated with the yellow vine syndrome of cranberry. HortScience 46 :901907.Google Scholar