Acessibilidade / Reportar erro

Delineamento Box-Behnken para remoção de DQO de efluente têxtil utilizando eletrocoagulação com corrente contínua pulsada

Box-Behnken design for COD removal of textile wastewater using electrocoagulation with pulsed DC

RESUMO

A remoção de poluentes de efluentes industriais de forma efetiva e economicamente viável ainda é um desafio. Dessa forma, o presente trabalho propôs investigar a tecnologia de eletrocoagulação (EC) para o tratamento de efluente têxtil utilizando corrente contínua pulsada (CCP). A metodologia de superfície de resposta Box-Behnken foi utilizada para analisar e otimizar as condições operacionais, visando à máxima remoção de demanda química de oxigênio (DQO). Os experimentos foram realizados com um volume reacional de 2,6 L, em modo batelada. Diante dos resultados obtidos, a configuração ótima considerada foi: velocidade de agitação = 200 rpm, frequência dos pulsos = 1.000 Hz e espaçamento entre os eletrodos = 1 mm, em 50 minutos de EC. Nessas condições foi obtida uma remoção de DQO de 81,23% (valor remanescente de 152 mg O2.L-1). Em adição, verificou-se que o processo de EC também é eficaz para a redução de cor, turbidez, sólidos suspensos totais, sulfato e sulfeto. A concentração de íons cloreto não foi alterada durante a EC, apresentando-se como um aspecto favorável para a reutilização do efluente tratado no próprio processo produtivo têxtil, o qual demanda uma elevada concentração de NaCl.

Palavras-chave:
eletrocoagulação; efluente têxtil; corrente contínua pulsada; Box-Behnken; remoção de demanda química de oxigênio

ABSTRACT

The effective and economically viable removal of industrial wastewater pollutants is still a challenge. Thus, this study proposed to investigate the electrocoagulation technology (EC) for the treatment of textile effluent using pulsed direct current (CCP). The methodology of Box-Behnken response surface was used to analyze and optimize the operating conditions, aimed at maximum chemical oxygen demand (COD) removal. The experiments were performed with a reaction volume of 2.6 L in batch mode. Based on these results, the optimal configuration was: agitation speed = 200 rpm, frequency of pulses = 1,000 Hz and spacing between electrodes = 1 mm, in 50 minutes of EC. Under these conditions it was obtained a COD removal of 81.23% (remainder value of 152 mg O2.L-1). In addition, it was found that the EC process is also effective for reduction of color, turbidity, total suspended solids, sulfate and sulfide. The concentration of chloride ions was not modified during the EC, presenting itself as a favorable aspect for the reuse of treated wastewater in the textile production process itself, which demands a high concentration of NaCl.

Keywords:
electrocoagulation; textile effluent; pulsed direct current; Box-Behnken; chemical oxygen demand removal

INTRODUÇÃO

A contaminação dos corpos hídricos devido ao descarte de efluentes industriais não tratados ou tratados de forma não efetiva é mais um dos fatores contribuintes para a escassez das fontes de água doce.

Dentro desse contexto, a indústria têxtil é considerada uma das mais preocupantes, devido à alta demanda de água requerida no seu processo produtivo e à geração de elevados volumes de efluentes complexos e de difícil degradação, em virtude da presença, geralmente, de corantes de diferentes classes, além de outros insumos como gomas sintéticas, sais e tensoativos. Segundo Yilmaz et al. (2011YILMAZ, A.E.; BONCUKCUO, R.; KOCAKERIM, M.; KARAKA, B.H. (2011) Waste utilization: the removal of textile dye (Bomaplex Red CR-L) from aqueous solution on sludge waste from electrocoagulation as adsorbent. Desalination, v. 277, p. 156-163.), a descarga de efluentes têxteis nos corpos d’água tem potencializado os riscos à saúde das pessoas, os quais estão associados à entrada de componentes tóxicos nas cadeias alimentares de animais e seres humanos.

Em função desses aspectos, diferentes tratamentos têm sido estudados e avaliados a fim de se obter uma remoção efetiva dos poluentes presentes no efluente têxtil. Dentre os mais discutidos na literatura estão: coagulação (MERZOUK et al., 2011MERZOUK, B.; BOUCHAIB, G.; MADANI, K.; VIAL, C.; SEKKI, A. (2011) Removal of a disperse red dye from synthetic wastewater by chemical coagulation and continuous electrocoagulation. A comparative study. Desalination, v. 272, p. 246-253.), adsorção (WASTI & AWAN, 2014WASTI, A. & AWAN, M.A. (2014) Adsorption of textile dye onto modified immobilized activated alumina. Journal of the Association of Arab Universities for Basic and Applied Sciences, v. 20, p. 26-31.), oxidação biológica (FU; ZHANG; WANG, 2012FU, Z.M.; ZHANG, Y.G.; WANG, X.J. (2012) Treatment textiles wastewater using anoxic filter bed and biological wriggle bed-ozone biological aerated filter. Advances in Environmental Science and Engineering, v. 518-523, p. 2961-2964.), métodos fotocatalíticos (ROSA et al., 2015ROSA, J.M.; FILETI, A.M.F.; TAMBOURGI, E.B.; SANTANA, J.C.C. (2015) Dyeing of cotton with reactive dyestuffs: the continuous reuse of textile wastewater effluent treated by UV/H2O2 homogeneous photocatalysis. Journal of Cleaner Production, v. 90, p. 60-65.), ozonização (WIJANNARONG et al., 2013WIJANNARONG, S.; AROONSRIMORAKOT, S.; THAVIPOKE, P.; KUMSOPA, A.; SANGJAN, S. (2013) Removal of reactive dyes from textile dyeing industrial effluent by ozonation process. APCBEE Procedia, v. 5, p. 279-282.), uso de membranas (DASGUPTA et al., 2015DASGUPTA, J.; SIKDER, J.; CHAKRABORTY, S.; CURCIO, S.; DRIOLI, E. (2015) Remediation of textile effluents by membrane based treatment techniques: a state of the art review. Journal of Environmental Management, v. 147, p. 55-72.) e eletrocoagulação (PI et al., 2014PI, K.; XIAO, Q.; ZHANG, H.; XIA, M.; GERSON, A.R. (2014) Decolorization of synthetic Methyl Orange waste water by electrocoagulation with periodic reversal of electrodes and optimization by RSM. Process Safety and Environmental Protection, v. 92, p. 796-806.).

A coagulação química, apesar de ser um dos tratamentos primários mais utilizados para reduzir os poluentes de águas residuais têxteis, exige o uso de produtos químicos e gera um grande volume de lodo contaminado de difícil disposição (LIN & CHEN, 1997LIN, S.H. & CHEN, M.L. (1997) Treatment of textile wastewater by electrochemical methods for reuse. Water Research, v. 31, n. 4, p. 868-876.; DASGUPTA et al., 2015DASGUPTA, J.; SIKDER, J.; CHAKRABORTY, S.; CURCIO, S.; DRIOLI, E. (2015) Remediation of textile effluents by membrane based treatment techniques: a state of the art review. Journal of Environmental Management, v. 147, p. 55-72.). Além disso, outra desvantagem do processo é a concentração remanescente de sólidos dissolvidos no efluente tratado (DASGUPTA et al., 2015DASGUPTA, J.; SIKDER, J.; CHAKRABORTY, S.; CURCIO, S.; DRIOLI, E. (2015) Remediation of textile effluents by membrane based treatment techniques: a state of the art review. Journal of Environmental Management, v. 147, p. 55-72.). Os processos de adsorção são demorados e caros devido à utilização de adsorventes comerciais (MONDAL et al., 2013MONDAL, B.; SRIVASTAVA, V.C.; KUSHWAHA, J.P.; BHATNAGAR, R.; SINGH, S.; MALL, I.D. (2013) Parametric and multiple response optimization for the electrochemical treatment of textile printing dye-bath effluent. Separation and Purification Technology, v. 109, p. 135-143.). Para a aplicação da degradação biológica é necessário um pré-tratamento para a remoção de corantes tóxicos (PI et al., 2014PI, K.; XIAO, Q.; ZHANG, H.; XIA, M.; GERSON, A.R. (2014) Decolorization of synthetic Methyl Orange waste water by electrocoagulation with periodic reversal of electrodes and optimization by RSM. Process Safety and Environmental Protection, v. 92, p. 796-806.). Além disso, a maioria dos corantes utilizados possui alta estabilidade química, propriedade que os torna resistentes à degradação biológica. As membranas possuem custo elevado, e existe o problema da incrustação (ROBINSON et al., 2001ROBINSON, T.; MCMULLAN, G.; MARCHANT, R.; NIGAM, P. (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource Technology, v. 77, p. 247-255.).

O uso de técnicas híbridas para tratar resíduos líquidos, com destaque para a combinação de radiação UV/ozonização, cavitação/ozonização, H2O2/ozonização e UV/H2O2, que se caracterizam como processos oxidativos avançados (POA), vem se destacando nos últimos anos (HAAS & HELLER, 1990HAAS, C.N. & HELLER, B. (1990) Kinetics of inactivation of Giardia Lamblia by free chlorine. Water Resource, v. 24, n. 2, p. 233-238.; PASCHOALATO; TRIMAILOVAS; DI BERNARDO, 2008PASCHOALATO, C.F.P.R; TRIMAILOVAS, M.R; DI BERNARDO, L. (2008) Formação de subprodutos orgânicos halogenados nas operações de pré-oxidação com cloro, ozônio e Peroxônio e pós-cloração em água contendo Substância húmica. Engenharia Sanitária e Ambiental, v. 13, n. 3, p. 23-37.). Abdala Neto et al. (2014ABDALA NETO, E.F.; AQUINO, M.D.; RIBEIRO, J.P.; VIDAL, C.B., NASCIMENTO, R.F.; SOUSA, F.W. (2014) O uso da cavitação hidrodinâmica aplicado ao tratamento de água. Engenharia Sanitária Ambiental, v. 19, n. 2, p. 105-112.) investigaram o uso da cavitação no tratamento de água residuária, reduzindo significativamente as concentrações de vários parâmetros físico-químicos, bem como de indicadores de contaminação microbiológica, destacando-se as reduções de nitrito e nitrato e a inativação completa dos microrganismos.

O desempenho promissor do tratamento eletroquímico, o qual também se caracteriza como POA, foi verificado na remoção de diversos tipos de poluentes, como metais pesados (THAVEEMAITREE; POLPRASERT; SEUNG-HWAN, 2003THAVEEMAITREE, Y.; POLPRASERT, C.; SEUNG-HWAN, L. (2003) Application of electrochemical process for landfill leachate treatment with emphasis on heavy metal and organic removal. Environmental Technology, v. 24, n. 9, p. 1135-1145.), corantes têxteis (NAUMCZYK; SZPYRKOWICZ; ZILIO-GRANDI, 1996NAUMCZYK, J.; SZPYRKOWICZ, L.; ZILIO-GRANDI, F. (1996) Electrochemical treatment of textile wastewater. Water Science and Technology, v. 34, n. 11, p. 17-24.), compostos fenólicos (KÖRBAHTI & TANYOLA, 2003KÖRBAHTI, B.K. & TANYOLA, A. (2003) Continuous electrochemical treatment of phenolic wastewater in a tubular reactor. Water Research, v. 37, n. 7, p. 1505-1514.), resíduos de petróleo (GOTSI et al., 2005GOTSI, M.; KALOGERAKIS, N.; PSILLAKIS, E.; SAMARAS, P.; MANTZAVINOS, D. (2005) Electrochemical oxidation of olive oil mill wastewaters. Water Research, v. 39, n. 17, p. 4177-4187.), entre outros.

A eletrocoagulação (EC) envolve a geração in situ de agentes coagulantes quando são utilizados eletrodos passivos, não havendo a necessidade da adição de produtos químicos. Além disso, a EC remove muitas espécies que a coagulação convencional não consegue remover, como, por exemplo, espécies iônicas solúveis (KHANDEGAR & SAROHA, 2013KHANDEGAR, V. & SAROHA, A.K. (2013) Electrocoagulation for the treatment of textile industry effluent: a review. Journal of Environmental Management, v. 128C, p. 949-963.). Contudo, como as outras tecnologias, a EC também apresenta limitações. O uso de corrente contínua (CC), modo de alimentação de energia convencional, promove a formação de uma película isolante de óxido no cátodo (KHANDEGAR & SAROHA, 2013KHANDEGAR, V. & SAROHA, A.K. (2013) Electrocoagulation for the treatment of textile industry effluent: a review. Journal of Environmental Management, v. 128C, p. 949-963.), a qual gera uma resistência ao fluxo de corrente elétrica e conduz a uma perda de eficiência na célula eletrolítica.

De modo a minimizar a influência dos aspectos citados anteriormente, o presente trabalho objetivou avaliar a aplicação da EC no tratamento de efluente têxtil utilizando um circuito gerador de corrente contínua pulsada (CCP). A metodologia de superfícies de resposta (MSR), através do planejamento fatorial Box-Behnken, foi utilizada para analisar e otimizar a influência das condições operacionais: velocidade de agitação, frequência dos pulsos e espaçamento entre os eletrodos sobre a remoção da demanda química de oxigênio (DQO) do efluente têxtil.

MÉTODOS

Sistema de eletrocoagulação

O reator eletrolítico (ilustrado na Figura 1) foi construído em formato cilíndrico, em acrílico, com dimensões de 60,0 cm de altura e 10,0 cm de diâmetro. Como condutores eletrônicos foram montados conjuntos de eletrodos, os quais foram compostos, cada um, por 4 placas de aço inoxidável do tipo 304, conectadas por um arranjo bipolar em série, cada uma medindo 5,0 x 40,0 x 0,3 cm, resultando numa área superficial total de 800,0 cm2. Cada conjunto foi feito com um espaçamento específico entre as placas, conforme necessário para o estudo de otimização. A potência consumida pelo sistema de EC foi monitorada por meio de um wattímetro da marca Wanf. Para os experimentos em que a agitação foi requerida, utilizou-se um agitador magnético fabricado pela Tecnal® TE-0851.

Figura 1:
Diagrama experimental do sistema de eletrocoagulação.

O modo de alimentação de energia empregado neste trabalho, de acordo com Abdala Neto (2012ABDALA NETO, E.F. (2012) Pré e pós-tratamento por eletro-oxidação associada à fotocatálise heterogênea em uma ETA por filtração direta visando a redução dos precursores dos compostos organoclorados. 250f. Tese (Doutorado em Engenharia Civil: Saneamento Ambiental) - Departamento de Engenharia Hidráulica e Ambiental, Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza.), foi elaborado com o intuito de provocar a geração de um campo elétrico uniformemente variado. Para isso, foi utilizada uma fonte de tensão elétrica Hayama® HY-1320 Plus 220 V - 13,8 V 20 A, conectada a um circuito elétrico capaz de gerar pulsos de corrente, caracterizando-se como uma forma de aplicação de CCP. Esse circuito elétrico foi configurado para emitir elétrons em uma faixa de frequência regulável de 0 a 2.200 Hz aos eletrodos submersos no efluente. Por outro lado, as moléculas presentes também possuem sua faixa de frequência vibratória natural, pois qualquer objeto formado por um material elástico, quando perturbado, vibrará com seu próprio conjunto de frequências particulares que, juntas, formam seu padrão de emissão (ABDALA NETO, 2012ABDALA NETO, E.F. (2012) Pré e pós-tratamento por eletro-oxidação associada à fotocatálise heterogênea em uma ETA por filtração direta visando a redução dos precursores dos compostos organoclorados. 250f. Tese (Doutorado em Engenharia Civil: Saneamento Ambiental) - Departamento de Engenharia Hidráulica e Ambiental, Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza.). Dessa forma, buscou-se alcançar o princípio da superposição: quando duas ou mais ondas ocupam determinado espaço ao mesmo tempo, os deslocamentos causados por cada uma delas se adicionam em cada ponto. Assim, quando a crista de uma onda se superpõe à crista de outra, seus efeitos individuais se somam e produzem uma onda resultante com amplitude maior (HEWITT, 2002HEWITT, P.G. (2002) Física conceitual. 9. ed. Porto Alegre: Bookman.; SERWAY & JEWETT, 2011SERWAY, R.A. & JEWETT, J.R. (2011) Princípios de física: eletromagnetismo. 3 ed. São Paulo: Thomson. v. 3. ; TIPLER & MOSCA, 2009TIPLER, P.A. & MOSCA, G. (2009) Física para cientistas e engenheiros. Rio de Janeiro: LTC. v. 3.). Isso se caracteriza como um fenômeno de ressonância e ocorre quando a frequência de vibração forçada de determinada matéria se iguala à sua frequência natural. Abdala Neto (2012ABDALA NETO, E.F. (2012) Pré e pós-tratamento por eletro-oxidação associada à fotocatálise heterogênea em uma ETA por filtração direta visando a redução dos precursores dos compostos organoclorados. 250f. Tese (Doutorado em Engenharia Civil: Saneamento Ambiental) - Departamento de Engenharia Hidráulica e Ambiental, Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza.) relatou que o processo eletrolítico baseado nesses princípios físicos pode apresentar muitas vantagens em comparação com a eletrólise convencional, pois, além de seguir os aspectos inerentes ao campo uniforme, o mesmo poderá ser favorecido de acordo com a frequência dos pulsos aplicada, através do fenômeno de ressonância, avaliando a possibilidade de romper ligações moleculares mais facilmente e em menor tempo, diminuindo o consumo de energia elétrica.

Experimentos de eletrocoagulação e métodos analíticos

Os experimentos de EC foram conduzidos utilizando 2,6 L do efluente têxtil proveniente de uma indústria fabricante de redes localizada no município de Jaguaruana, Ceará. A cada 10 minutos de EC até o tempo total de 60 minutos, foram retiradas alíquotas de 15 mL para a realização da análise de DQO. Além da realização desta, foram realizadas outras análises físico-químicas com as amostras do efluente bruto e tratado com as condições operacionais ótimas, visando verificar a eficiência do processo. Todas as análises foram realizadas em duplicata. Os métodos utilizados, recomendados pela American Public Health Association (APHA, 2005AMERICAN PUBLIC HEALTH ASSOCIATION - APHA. (2005) Standard Methods for Examination of Water and Wastewater. 19 ed. Washington, D.C.: APHA, AWWA, WPCF.), apresentam-se na Tabela 1.

Tabela 1:
Parâmetros e métodos analíticos descritos no Standard Methods for the Examination of Water and Wastewater.

O tempo de uma hora de repouso das amostras foi definido como padrão, sendo suficiente para que ocorresse a sedimentação dos flocos formados e a realização das análises utilizando os sobrenadantes das amostras do efluente tratado.

Para a avaliação da descoloração foi realizada a leitura da absorbância, em um espectrofotômetro Shimadzu® UV-1800, das amostras do efluente bruto com diluição 1:2 e tratado no intervalo de 200 a 850 nm.

Os metais ferro e cromo foram selecionados para análise por serem os principais constituintes do material dos eletrodos utilizados (aço inox 304), como também por constarem como parâmetros para descarte nas legislações ambientais vigentes.

Planejamento experimental

Diante da literatura estudada, os parâmetros velocidade de agitação e espaçamento entre os eletrodos se destacam dentre os parâmetros citados na última década como interferentes no processo de EC. Essas duas variáveis podem influenciar diretamente na eficiência e indiretamente nos custos desse tipo de tratamento.

Enquanto o parâmetro frequência dos pulsos apresenta-se como uma variável fundamental para o presente estudo em particular, pois, segundo o princípio da superposição de ondas, o qual foi tomado como base para a aplicação da EC com a possível geração do campo uniformemente variado, dependendo dos níveis utilizados de frequência, poderá ocorrer a interferência construtiva ou não.

À vista do exposto, os parâmetros velocidade de agitação, espaçamento entre os eletrodos e frequência dos pulsos foram definidos como variáveis independentes para serem investigadas sobre o percentual de remoção de DQO, através do delineamento experimental Box-Behnken (DBB).

Todos os resultados obtidos durante este estudo de otimização foram analisados com o auxílio do software R (R CORE TEAM, 2014R CORE TEAM (2014). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Disponível em: <Disponível em: http://www.R-project.org/ >. Acesso em: 10 jan. 2015.
http://www.R-project.org/...
).

Na Tabela 2, apresentam-se os valores codificados e não codificados dos níveis dos fatores (variáveis independentes) selecionados.

Tabela 2:
Fatores e níveis do delineamento Box-Behnken.

O número de experimentos necessários para o desenvolvimento do DBB foi definido de acordo com a Equação 1, apresentada por Aslan & Cebeci (2007ASLAN, N. & CEBECI, Y. (2007) Application of Box-Behnken design and response surface methodology for modeling of some Turkish coals. Fuel, v. 86, n. 1-2, p. 90-97.):

N = 2 k ( k - 1 ) + C o (1)

Onde:

k é o número de fatores ou variáveis independentes; e

C0 é o número de replicatas do ponto central.

Dessa maneira, como foram selecionados 3 fatores e realizadas 4 repetições do ponto central para o presente planejamento, o mesmo resultou em um número total de 16 experimentos, sendo que todos foram realizados em duplicata. A resposta ou variável dependente (Y) foi expressa como a média simples dos valores do percentual de remoção de DQO obtidos nas réplicas de cada experimento.

A partir dos resultados experimentais, foi possível a elaboração do modelo matemático baseado no método dos mínimos quadrados ordinários. Esse método é utilizado para estimar os coeficientes (β0, β1, β2,..., βn) do modelo usado na modelagem da resposta Y, de tal forma que a soma dos quadrados dos resíduos seja a menor possível. Em sequência, foi realizada a avaliação da validade da suposição de normalidade dos resíduos, pois a análise de regressão se baseia também no fato de que os erros seguem uma distribuição normal. De acordo com Jacobi, Souza e Pereira (2002JACOBI, L.F.; SOUZA, A.M.; PEREIRA, J.E.S. (2002) Gráfico de controle de regressão aplicado na monitoração de processos. Produção, v. 12, n. 1. ), a condição de normalidade dos resíduos é fundamental para a definição de intervalos de confiança e testes de significância.

Os gráficos de superfície de resposta foram construídos com o intuito de ilustrar a região ótima definida pelas variáveis em função da máxima remoção de DQO. Para isso, a modelagem foi realizada ajustando-se ao modelo linear de máxima ascendência.

RESULTADOS E DISCUSSÃO

Experimentos de eletrocoagulação

A Tabela 3 apresenta os fatores e níveis correspondentes aos 16 experimentos de EC realizados, bem como os valores remanescentes de DQO e os valores médios da potência e da densidade de corrente mensurados.

Tabela 3:
Resultados obtidos correspondentes aos 16 experimentos de eletrocoagulação.

De acordo com os dados da Tabela 3, notou-se que a partir dos experimentos 5, 6, 9 e 10, os quais possuem em comum o espaçamento de 1 mm (destacados em negrito), foram obtidos os maiores valores médios de potência, como também de densidade de corrente, enquanto que, à medida que o espaçamento entre os eletrodos foi aumentado, esses valores diminuíram. Isso é compreensível, pois a solução possui resistividade à passagem de corrente elétrica (CERQUEIRA, 2011CERQUEIRA, A.A. (2011) Aplicação da técnica de eletrofloculação utilizando corrente alternada de frequência variável no tratamento de água de produção da indústria do petróleo. 133f. Tese (Doutorado em Meio Ambiente) - Universidade do Estado do Rio de Janeiro, Rio de Janeiro.; CRESPILHO & REZENDE, 2004CRESPILHO, F.N. & REZENDE, M.O.O. (2004) Eletroflotação: princípios e aplicações. São Carlos: RiMa.; WIMMER, 2007WIMMER, A.C.S. (2007) Aplicação do processo eletrolítico no tratamento de efluentes de uma indústria petroquímica. 195f. Dissertação (Mestrado em Ciência dos Materiais e Metalurgia) - Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro.), logo, como os conjuntos de eletrodos possuem a mesma área superficial, quanto maior for a distância entre os eletrodos, mais dificultado será o fluxo de elétrons entre os mesmos e a densidade de corrente obtida será menor, diminuindo o consumo de energia. Portanto, confirmou-se que a distância é proporcional à resistência elétrica da solução oferecida à passagem de corrente.

Observando-se o valor remanescente de DQO correspondente a cada tempo de EC, verificou-se que, em 60 minutos de processo, os experimentos 1, 2, 5, 6, 9, 10, 11 e 12 atingiram uma concentração de DQO abaixo de 200 mg O2.L-1 (limite exigido para lançamento de acordo com a Portaria n° 154/2002 da Secretaria do Meio Ambiente do Estado do Ceará) (CEARÁ, 2002CEARÁ. (2002) Portaria n.º 154, de 22 de julho de 2002. Dispõe sobre padrões e condições para lançamento de efluentes líquidos gerados por fontes poluidoras. Diário Oficial do Estado. Disponível em: <Disponível em: http://antigo.semace.ce.gov.br/integracao/biblioteca/legislacao/conteudo_legislacao.asp?cd=95 >. Acesso em:08/06/2014.
http://antigo.semace.ce.gov.br/integraca...
). Em 50 minutos de EC, ajustaram-se a esse limite exigido os experimentos 5, 6, 9 e 10 com 192,16; 187,05; 123,41 e 158,64 mg O2.L-1, respectivamente. Completados 40 minutos de processo, apenas o experimento 9 ajustou-se ao limite exigido, com 185,35 mg O2.L-1. Em vista disso, optou-se por realizar o estudo de otimização da EC a partir da remoção obtida com 50 minutos de processo, tempo requerido para o enquadramento do parâmetro de DQO dentro dos padrões exigidos pela legislação com uma margem de confiabilidade.

Otimização das condições operacionais

A Tabela 4 apresenta a matriz utilizada no DBB com as respostas obtidas em cada experimento, a partir do tempo total de 50 minutos de EC.

Tabela 4:
Matriz com os resultados experimentais para a remoção de demanda química de oxigênio.

O experimento 9 (200 rpm/600 Hz/1 mm) destacou-se dentre os demais, com o maior percentual de remoção de DQO atingido (84,74%), enquanto a menor remoção (63,98%) foi alcançada pelo experimento 3 (0 rpm/2.200 Hz/5,5 mm).

A Tabela 5 apresenta os coeficientes do modelo matemático estimados pelo software, bem como o erro padrão dos coeficientes, os respectivos valores de t de Student e as significâncias de cada coeficiente da regressão através do valor p. Os coeficientes estatisticamente significativos foram destacados em negrito. O nível de significância adotado para este estudo foi de 5%, portanto, os coeficientes que apresentaram probabilidade maior do que 0,05 (p>0,05) não foram considerados estatisticamente significativos.

Tabela 5:
Coeficientes da regressão linear, desvio padrão dos coeficientes, valores de t e probabilidade estatística p dos coeficientes do modelo referente à remoção de demanda química de oxigênio.

O modelo matemático obtido somente com as parcelas que foram estatisticamente significativas apresenta-se de acordo com a Equação 2. Tem-se que X1, X2 e X3 são os valores das variáveis independentes velocidade de agitação, frequência dos pulsos e espaçamento entre os eletrodos, respectivamente.

R e m o ç ã o d e D Q O ( % ) = 73,3388 - 3,1469 X 2 - 5,1569 X 3 - 4,6581 X 1 2 + 3,0081 X 3 2 (2)

Conforme os dados da Tabela 5, verificou-se que as três variáveis independentes foram consideradas estatisticamente significativas em termos lineares ou quadráticos para a remoção de DQO. Porém, o espaçamento entre os eletrodos (X3), em termo linear, se destacou dentre as demais variáveis como a de maior efeito, com valor p igual a (9,35x10-5), influenciando de forma inversa (valor negativo do coeficiente), ou seja, quanto maiores os seus níveis, menor a eficiência de remoção de DQO. Já em relação ao termo quadrático, o espaçamento entre os eletrodos (X3 2) atuou positivamente sobre a remoção de DQO. A frequência dos pulsos em termo linear (X2) e a velocidade de agitação em termo quadrático (X1 2) exerceram efeito negativo sobre a remoção de DQO, proporcionando maiores porcentagens de remoção a partir de menores valores das mesmas.

A Figura 2 ilustra o gráfico Q-Q plot, o qual permitiu a inspeção da normalidade por meio da comparação entre a frequência acumulada dos resíduos padronizados e a curva normal para a variável resposta.

Figura 2:
Gráfico de probabilidade normal dos resíduos para a variável resposta demanda química de oxigênio.

De acordo com a Figura 2, verificam-se indícios de que os erros são normalmente distribuídos, pois a maioria dos pontos está localizada de forma aproximada ao longo da reta, demonstrando a confiabilidade dos pontos experimentais obtidos.

O modelo matemático que descreve a resposta, apresentado na Equação 3, é capaz de explicar cerca de 92% (R²=0,916) da variação na remoção de DQO, enquanto o valor p obtido para o mesmo foi 9,315x10-4, confirmando sua significância estatística (p<0,05).

Para estudar as condições ótimas do processo, foram analisados simultaneamente as superfícies de resposta e os contornos. A Figura 3 apresenta os gráficos de superfície de resposta, correlacionando as variáveis com o percentual de remoção de DQO.

Figura 3:
Gráficos de superfícies de resposta: (A) remoção de demanda química de oxigênio (%) x agitação (A) x espaçamento (C); (B) remoção de demanda química de oxigênio (%) x agitação (A) x frequência (B); (C) remoção de demanda química de oxigênio (%) x frequência (B) x espaçamento (C).

De acordo com a Figura 3A, fixou-se a frequência dos pulsos em seu valor médio (1.400 Hz), e as variáveis velocidade de agitação e espaçamento entre os eletrodos foram confrontadas com a região ótima para a resposta. Nesse caso, foi possível observar que a remoção de DQO é intensificada à medida que o valor do espaçamento se aproxima do seu nível mínimo (1 mm) e a agitação está na faixa de 100 a 350 rpm. Na Figura 3B, o espaçamento foi mantido constante (5,5 mm) e as variáveis velocidade de agitação e frequência dos pulsos foram correlacionadas com a região ótima para o percentual de remoção. Notou-se, com essas condições, que a remoção de DQO tende a aumentar quando o valor da frequência é reduzido ao menor nível estudado (600 Hz) e a agitação permanece entre 200 e 250 rpm. Já na Figura 3C, fixou-se o valor médio da velocidade de agitação (200 rpm), e as variáveis frequência e espaçamento entre os eletrodos foram correlacionadas com a região ótima para o aumento da eficiência de remoção. Observou-se que a diminuição dos valores de frequência e espaçamento para os seus menores níveis estudados favoreceu o aumento da eficiência de remoção de DQO.

Por fim, foram calculados os valores ótimos das três variáveis operacionais estudadas para a máxima remoção de DQO. Assim, para a remoção de 82,01% de DQO, são requeridos velocidade de agitação de 209 rpm, frequência dos pulsos de 1129,6 Hz e espaçamento entre os eletrodos igual a 1,27 mm.

Diante dos resultados obtidos neste estudo de otimização, constata-se que:

  • a velocidade de agitação ótima (209 rpm) para a remoção de DQO apresentou-se próxima ao ponto médio estudado. Diante disso, inferiu-se que, em níveis mais baixos ou com velocidade de agitação nula, a mobilidade dos íons dentro do reator foi insuficiente, não favorecendo a formação dos flocos. Já nos níveis mais altos pode ocorrer colisão entre os flocos devido à elevada turbulência gerada, podendo disponibilizar no meio uma quantidade maior de partículas menores suspensas e dissolvidas, conferindo maior teor de matéria orgânica ao efluente;

  • para o espaçamento entre as placas, o valor ideal (1,27 mm) para a remoção de DQO foi mais próximo do nível mínimo estudado. Já em outros trabalhos, como os de Nanseu-Njiki et al. (2009NANSEU-NJIKI, C.P.; TCHAMANGO, S.R.; NGOM, P.C.; DARCHEN, A.; NGAMENI, E. (2009) Mercury (II) removal from water by electrocoagulation using aluminum and iron electrodes. Journal of Hazardous Materials, v. 168, n. 2-3, p. 1430-1436.) e Daneshvar, Sorkhabi e Kasiri (2004DANESHVAR, N.; SORKHABI, H.A.; KASIRI, M.B. (2004) Decolorization of dye solution containing Acid Red 14 by electrocoagulation with a comparative investigation of different electrode connections. Journal of Hazardous Materials B, v. 112, n. 1-2, p. 55-62.), a menor distância prejudicou a remoção dos poluentes ao produzir elevada atração eletrostática, provocando, assim, a degradação dos flocos pela colisão de um com outro. No presente trabalho, a menor distância favoreceu o processo de EC, o que também foi conferido por Modirshahla, Behnajady e Kooshaiian (2007MODIRSHAHLA, N.; BEHNAJADY, M.; KOOSHAIIAN, S. (2007) Investigation of the effect of different electrode connections on the removal efficiency of Tartrazine from aqueous solutions by electrocoagulation. Dyes and Pigments, v. 74, p. 249-257.) e Mondal et al. (2013MONDAL, B.; SRIVASTAVA, V.C.; KUSHWAHA, J.P.; BHATNAGAR, R.; SINGH, S.; MALL, I.D. (2013) Parametric and multiple response optimization for the electrochemical treatment of textile printing dye-bath effluent. Separation and Purification Technology, v. 109, p. 135-143.). Apesar de, teoricamente, o valor ótimo de distância obtido ser bastante reduzido e propício para a desconstrução dos flocos, o mesmo permitiu maior facilidade para o fluxo de elétrons, o que foi evidenciado pelos maiores valores de densidade de corrente proporcionados quando se utilizaram eletrodos com espaçamento de 1 mm (Tabela 3), ocasionando provavelmente a formação de uma maior quantidade de agentes coagulantes. Portanto, se houve desconstrução de flocos, esse efeito negativo foi irrelevante se comparado ao efeito positivo proporcionado pela provável maior disponibilização de agentes coagulantes pelos eletrodos;

  • o valor ótimo de frequência dos pulsos encontrado (1129,6 Hz) para a maior eficiência de remoção de DQO está compreendido entre os níveis mínimo e médio estudados. Esse valor corresponde ao valor de frequência que possivelmente mais se aproximou dos valores de frequência de vibração natural das moléculas presentes na célula eletrolítica, alcançando uma interferência construtiva entre ondas, na qual a soma dos seus efeitos individuais pode ter proporcionado o estado máximo de vibração das moléculas, facilitando o transporte de massa no interior do reator e aumentando, assim, a probabilidade das substâncias suspensas serem coaguladas. Além disso, quando esse efeito é alcançado, de acordo com Abdala Neto (2012ABDALA NETO, E.F. (2012) Pré e pós-tratamento por eletro-oxidação associada à fotocatálise heterogênea em uma ETA por filtração direta visando a redução dos precursores dos compostos organoclorados. 250f. Tese (Doutorado em Engenharia Civil: Saneamento Ambiental) - Departamento de Engenharia Hidráulica e Ambiental, Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza.), a ruptura de ligações, como a ligação covalente da molécula da água, é facilitada, o que pode ter ocorrido.

Verificação da eficiência do tratamento

A Tabela 6 apresenta os parâmetros físico-químicos e os respectivos resultados obtidos na caracterização do efluente antes e após o tratamento realizado de acordo com as condições ótimas de operação da EC. Além disso, na Tabela 6 encontram-se os valores dos padrões ambientais de lançamento de acordo com a Resolução nº 430/2011 do Conselho Nacional do Meio Ambiente (CONAMA) (BRASIL, 2011BRASIL. (2011) Resolução n.º 430, de 13 de maio de 2011. Dispõe sobre as condições e padrões de lançamento de efluentes, complementa e altera a Resolução n.º 357, de 17 de março de 2005, do Conselho Nacional do Meio Ambiente - CONAMA. Diário Oficial da União, Brasília. Disponível em: <Disponível em: http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=646 >. Acesso em: 1.º maio 2014.
http://www.mma.gov.br/port/conama/legiab...
) e a Portaria nº 154/2002 da Superintendência Estadual do Meio Ambiente (SEMACE) (CEARÁ, 2002CEARÁ. (2002) Portaria n.º 154, de 22 de julho de 2002. Dispõe sobre padrões e condições para lançamento de efluentes líquidos gerados por fontes poluidoras. Diário Oficial do Estado. Disponível em: <Disponível em: http://antigo.semace.ce.gov.br/integracao/biblioteca/legislacao/conteudo_legislacao.asp?cd=95 >. Acesso em:08/06/2014.
http://antigo.semace.ce.gov.br/integraca...
).

Tabela 6:
Caracterização do efluente bruto e tratado com as condições operacionais ótimas: agitação = 200 rpm; frequência = 1000 Hz; espaçamento = 1 mm e tempo = 50 minutos.

Devido às limitações operacionais, optou-se por utilizar os valores aproximados dos valores ótimos para velocidade de agitação, frequência dos pulsos e espaçamento entre os eletrodos, respectivamente, 200 rpm, 1.000 Hz e 1 mm.

De acordo com a Tabela 6, é possível verificar que o valor de pH 9,9 apresenta-se acima do padrão de lançamento que consta na Portaria nº 154/2002 da SEMACE (CEARÁ, 2002CEARÁ. (2002) Portaria n.º 154, de 22 de julho de 2002. Dispõe sobre padrões e condições para lançamento de efluentes líquidos gerados por fontes poluidoras. Diário Oficial do Estado. Disponível em: <Disponível em: http://antigo.semace.ce.gov.br/integracao/biblioteca/legislacao/conteudo_legislacao.asp?cd=95 >. Acesso em:08/06/2014.
http://antigo.semace.ce.gov.br/integraca...
), como também na Resolução nº 430/2011 do CONAMA (BRASIL, 2011BRASIL. (2011) Resolução n.º 430, de 13 de maio de 2011. Dispõe sobre as condições e padrões de lançamento de efluentes, complementa e altera a Resolução n.º 357, de 17 de março de 2005, do Conselho Nacional do Meio Ambiente - CONAMA. Diário Oficial da União, Brasília. Disponível em: <Disponível em: http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=646 >. Acesso em: 1.º maio 2014.
http://www.mma.gov.br/port/conama/legiab...
). Em vista disso, para o lançamento do efluente tratado no corpo d’água receptor seria necessário um pequeno ajuste para o enquadramento do pH na faixa de 5 a 9.

O aumento do pH durante a EC pode ser explicado pela formação de íons OH- através da reação de redução da água no cátodo, de acordo com a Equação 3:

2 H 2 O ( l ) + 2 e - H 2 ( g ) + 2 ( O H ) ( a q ) - (3)

A turbidez não consta como parâmetro para lançamento de efluentes, porém, se o valor obtido (17,1 UNT) for comparado ao valor exigido pela Resolução nº 357/05 do CONAMA (BRASIL, 2005BRASIL. (2005) Resolução n.º 357, de 17 de março de 2005. Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes, e dá outras providências. Diário Oficial da União, Brasília. Disponível em: <Disponível em: http://www.mma.gov.br/port/conama/res/res05/res35705.pdf > Acesso em: 5 maio 2014.
http://www.mma.gov.br/port/conama/res/re...
) para águas doces de classe 1 (até 40 UNT), pode-se afirmar que esse parâmetro obteve um valor final bastante satisfatório.

O valor da DQO remanescente (152 mg O2.L-1) atendeu ao padrão exigido pela Portaria nº 154/2002 da SEMACE. Além disso, o percentual de remoção de DQO obtido (81,23%) foi bastante próximo ao valor predito pelo modelo (82,01%), confirmando mais uma vez que os dados foram bem ajustados pelo modelo construído.

A descoloração do efluente têxtil também foi satisfatória, alcançando percentual de 98,94%, conforme evidenciado na Figura 4, a qual apresenta o espectro de absorbância UV-Vis das amostras dos efluentes bruto e tratado, conforme as condições operacionais ótimas.

Figura 4:
Espectro de absorbância UV-Vis do efluente bruto e tratado após 50 minutos de EC com as condições operacionais ótimas.

De acordo com os resultados das análises dos metais (ferro e cromo), é importante destacar que nenhum deles, os quais eram constituintes do eletrodo, apresentou concentração final acima do valor permitido para o lançamento do efluente, o que permite inferir que no final do tratamento a maior parte dos íons metálicos estava complexada ou adsorvida nos flocos formados.

CONCLUSÕES

A partir dos resultados deste trabalho, foi possível confirmar a eficiência do processo de EC utilizando CCP para a remoção de DQO do efluente têxtil. O percentual de remoção de DQO atingido (81,23%) proporcionou o enquadramento desse parâmetro dentro dos limites exigidos para lançamento pela Portaria nº 154 da SEMACE.

A MSR através do delineamento de Box-Behnken se mostrou uma ferramenta simples e prática para planejar os experimentos, e ainda possibilitou a avaliação do efeito dos parâmetros (velocidade de agitação, frequência dos pulsos e espaçamento entre os eletrodos) e suas interações na remoção de DQO do efluente. Além disso, o modelo matemático construído foi considerado válido para prever a resposta, considerando-se o intervalo de valores das variáveis independentes estudado.

Além da eficácia para a remoção de DQO, a EC também permitiu a redução de cor, turbidez, sólidos suspensos totais, sulfato e sulfeto do efluente têxtil, alcançando os seguintes percentuais de remoção: 98,94; 85,87; 45,98; 98,75 e acima de 55,2%, respectivamente. Porém, um cuidado deve ser tomado na observação do valor do pH final do efluente, pois, como foi verificado, o processo de EC interfere no pH da solução, podendo ser necessária alguma correção do mesmo antes do lançamento do efluente tratado no corpo receptor.

A melhor opção para a disposição final do efluente têxtil tratado por EC com CCP seria o reuso no próprio processo produtivo têxtil. Além da grande economia de água que seria realizada, também haveria a possibilidade da economia de NaCl, que é adicionado principalmente durante o processo de tingimento, pois, como foi verificado no efluente tratado, a concentração de íons cloreto não foi consumida. A economia nesses insumos compensaria o gasto referente ao consumo energético do tratamento e, ao mesmo tempo, reduziria drasticamente o impacto no meio ambiente. Dessa forma, sugere-se a simulação do processo de tingimento têxtil utilizando-se o efluente tratado por EC com CCP.

REFERÊNCIAS

  • ABDALA NETO, E.F. (2012) Pré e pós-tratamento por eletro-oxidação associada à fotocatálise heterogênea em uma ETA por filtração direta visando a redução dos precursores dos compostos organoclorados 250f. Tese (Doutorado em Engenharia Civil: Saneamento Ambiental) - Departamento de Engenharia Hidráulica e Ambiental, Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza.
  • ABDALA NETO, E.F.; AQUINO, M.D.; RIBEIRO, J.P.; VIDAL, C.B., NASCIMENTO, R.F.; SOUSA, F.W. (2014) O uso da cavitação hidrodinâmica aplicado ao tratamento de água. Engenharia Sanitária Ambiental, v. 19, n. 2, p. 105-112.
  • AMERICAN PUBLIC HEALTH ASSOCIATION - APHA. (2005) Standard Methods for Examination of Water and Wastewater 19 ed. Washington, D.C.: APHA, AWWA, WPCF.
  • ASLAN, N. & CEBECI, Y. (2007) Application of Box-Behnken design and response surface methodology for modeling of some Turkish coals. Fuel, v. 86, n. 1-2, p. 90-97.
  • BRASIL. (2005) Resolução n.º 357, de 17 de março de 2005. Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes, e dá outras providências. Diário Oficial da União, Brasília. Disponível em: <Disponível em: http://www.mma.gov.br/port/conama/res/res05/res35705.pdf > Acesso em: 5 maio 2014.
    » http://www.mma.gov.br/port/conama/res/res05/res35705.pdf
  • BRASIL. (2011) Resolução n.º 430, de 13 de maio de 2011. Dispõe sobre as condições e padrões de lançamento de efluentes, complementa e altera a Resolução n.º 357, de 17 de março de 2005, do Conselho Nacional do Meio Ambiente - CONAMA. Diário Oficial da União, Brasília. Disponível em: <Disponível em: http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=646 >. Acesso em: 1.º maio 2014.
    » http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=646
  • CEARÁ. (2002) Portaria n.º 154, de 22 de julho de 2002. Dispõe sobre padrões e condições para lançamento de efluentes líquidos gerados por fontes poluidoras. Diário Oficial do Estado Disponível em: <Disponível em: http://antigo.semace.ce.gov.br/integracao/biblioteca/legislacao/conteudo_legislacao.asp?cd=95 >. Acesso em:08/06/2014.
    » http://antigo.semace.ce.gov.br/integracao/biblioteca/legislacao/conteudo_legislacao.asp?cd=95
  • CERQUEIRA, A.A. (2011) Aplicação da técnica de eletrofloculação utilizando corrente alternada de frequência variável no tratamento de água de produção da indústria do petróleo 133f. Tese (Doutorado em Meio Ambiente) - Universidade do Estado do Rio de Janeiro, Rio de Janeiro.
  • CRESPILHO, F.N. & REZENDE, M.O.O. (2004) Eletroflotação: princípios e aplicações. São Carlos: RiMa.
  • DANESHVAR, N.; SORKHABI, H.A.; KASIRI, M.B. (2004) Decolorization of dye solution containing Acid Red 14 by electrocoagulation with a comparative investigation of different electrode connections. Journal of Hazardous Materials B, v. 112, n. 1-2, p. 55-62.
  • DASGUPTA, J.; SIKDER, J.; CHAKRABORTY, S.; CURCIO, S.; DRIOLI, E. (2015) Remediation of textile effluents by membrane based treatment techniques: a state of the art review. Journal of Environmental Management, v. 147, p. 55-72.
  • FU, Z.M.; ZHANG, Y.G.; WANG, X.J. (2012) Treatment textiles wastewater using anoxic filter bed and biological wriggle bed-ozone biological aerated filter. Advances in Environmental Science and Engineering, v. 518-523, p. 2961-2964.
  • GOTSI, M.; KALOGERAKIS, N.; PSILLAKIS, E.; SAMARAS, P.; MANTZAVINOS, D. (2005) Electrochemical oxidation of olive oil mill wastewaters. Water Research, v. 39, n. 17, p. 4177-4187.
  • HAAS, C.N. & HELLER, B. (1990) Kinetics of inactivation of Giardia Lamblia by free chlorine. Water Resource, v. 24, n. 2, p. 233-238.
  • HEWITT, P.G. (2002) Física conceitual 9. ed. Porto Alegre: Bookman.
  • JACOBI, L.F.; SOUZA, A.M.; PEREIRA, J.E.S. (2002) Gráfico de controle de regressão aplicado na monitoração de processos. Produção, v. 12, n. 1.
  • KHANDEGAR, V. & SAROHA, A.K. (2013) Electrocoagulation for the treatment of textile industry effluent: a review. Journal of Environmental Management, v. 128C, p. 949-963.
  • KÖRBAHTI, B.K. & TANYOLA, A. (2003) Continuous electrochemical treatment of phenolic wastewater in a tubular reactor. Water Research, v. 37, n. 7, p. 1505-1514.
  • LIN, S.H. & CHEN, M.L. (1997) Treatment of textile wastewater by electrochemical methods for reuse. Water Research, v. 31, n. 4, p. 868-876.
  • MAIA, L.G.C. (2014) Estudo do processo de eletrocoagulação/floculação aplicado ao polimento de efluente doméstico Dissertação (Mestrado em Engenharia Civil, Área de Concentração: Saneamento Ambiental) - Departamento de Engenharia Hidráulica e Ambiental, Universidade Federal do Ceará, Fortaleza.
  • MERZOUK, B.; BOUCHAIB, G.; MADANI, K.; VIAL, C.; SEKKI, A. (2011) Removal of a disperse red dye from synthetic wastewater by chemical coagulation and continuous electrocoagulation. A comparative study. Desalination, v. 272, p. 246-253.
  • MODIRSHAHLA, N.; BEHNAJADY, M.; KOOSHAIIAN, S. (2007) Investigation of the effect of different electrode connections on the removal efficiency of Tartrazine from aqueous solutions by electrocoagulation. Dyes and Pigments, v. 74, p. 249-257.
  • MONDAL, B.; SRIVASTAVA, V.C.; KUSHWAHA, J.P.; BHATNAGAR, R.; SINGH, S.; MALL, I.D. (2013) Parametric and multiple response optimization for the electrochemical treatment of textile printing dye-bath effluent. Separation and Purification Technology, v. 109, p. 135-143.
  • NANSEU-NJIKI, C.P.; TCHAMANGO, S.R.; NGOM, P.C.; DARCHEN, A.; NGAMENI, E. (2009) Mercury (II) removal from water by electrocoagulation using aluminum and iron electrodes. Journal of Hazardous Materials, v. 168, n. 2-3, p. 1430-1436.
  • NAUMCZYK, J.; SZPYRKOWICZ, L.; ZILIO-GRANDI, F. (1996) Electrochemical treatment of textile wastewater. Water Science and Technology, v. 34, n. 11, p. 17-24.
  • PASCHOALATO, C.F.P.R; TRIMAILOVAS, M.R; DI BERNARDO, L. (2008) Formação de subprodutos orgânicos halogenados nas operações de pré-oxidação com cloro, ozônio e Peroxônio e pós-cloração em água contendo Substância húmica. Engenharia Sanitária e Ambiental, v. 13, n. 3, p. 23-37.
  • PI, K.; XIAO, Q.; ZHANG, H.; XIA, M.; GERSON, A.R. (2014) Decolorization of synthetic Methyl Orange waste water by electrocoagulation with periodic reversal of electrodes and optimization by RSM. Process Safety and Environmental Protection, v. 92, p. 796-806.
  • R CORE TEAM (2014). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Disponível em: <Disponível em: http://www.R-project.org/ >. Acesso em: 10 jan. 2015.
    » http://www.R-project.org/
  • ROBINSON, T.; MCMULLAN, G.; MARCHANT, R.; NIGAM, P. (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource Technology, v. 77, p. 247-255.
  • ROSA, J.M.; FILETI, A.M.F.; TAMBOURGI, E.B.; SANTANA, J.C.C. (2015) Dyeing of cotton with reactive dyestuffs: the continuous reuse of textile wastewater effluent treated by UV/H2O2 homogeneous photocatalysis. Journal of Cleaner Production, v. 90, p. 60-65.
  • SERWAY, R.A. & JEWETT, J.R. (2011) Princípios de física: eletromagnetismo. 3 ed. São Paulo: Thomson. v. 3.
  • THAVEEMAITREE, Y.; POLPRASERT, C.; SEUNG-HWAN, L. (2003) Application of electrochemical process for landfill leachate treatment with emphasis on heavy metal and organic removal. Environmental Technology, v. 24, n. 9, p. 1135-1145.
  • TIPLER, P.A. & MOSCA, G. (2009) Física para cientistas e engenheiros Rio de Janeiro: LTC. v. 3.
  • WASTI, A. & AWAN, M.A. (2014) Adsorption of textile dye onto modified immobilized activated alumina. Journal of the Association of Arab Universities for Basic and Applied Sciences, v. 20, p. 26-31.
  • WIJANNARONG, S.; AROONSRIMORAKOT, S.; THAVIPOKE, P.; KUMSOPA, A.; SANGJAN, S. (2013) Removal of reactive dyes from textile dyeing industrial effluent by ozonation process. APCBEE Procedia, v. 5, p. 279-282.
  • WIMMER, A.C.S. (2007) Aplicação do processo eletrolítico no tratamento de efluentes de uma indústria petroquímica 195f. Dissertação (Mestrado em Ciência dos Materiais e Metalurgia) - Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro.
  • YILMAZ, A.E.; BONCUKCUO, R.; KOCAKERIM, M.; KARAKA, B.H. (2011) Waste utilization: the removal of textile dye (Bomaplex Red CR-L) from aqueous solution on sludge waste from electrocoagulation as adsorbent. Desalination, v. 277, p. 156-163.

Datas de Publicação

  • Publicação nesta coleção
    Nov-Dec 2017

Histórico

  • Recebido
    10 Jun 2015
  • Aceito
    22 Set 2016
Associação Brasileira de Engenharia Sanitária e Ambiental - ABES Av. Beira Mar, 216 - 13º Andar - Castelo, 20021-060 Rio de Janeiro - RJ - Brasil - Rio de Janeiro - RJ - Brazil
E-mail: esa@abes-dn.org.br