Tierarztl Prax Ausg G Grosstiere Nutztiere 2015; 43(01): 25-34
DOI: 10.15653/TPG-140503
Original Article
Schattauer GmbH

Effects of propylene glycol on the metabolic status and milk production of dairy buffaloes

Auswirkungen von Propylenglykol auf die Stoffwechsellage und die Milchproduktion von Milchbüffeln
H. A. Hussein
1   Internal Veterinary Medicine, Department of Animal Medicine, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt;
,
S. M. Abdel-Raheem
2   Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt;
,
M. Abd-Allah
3   Animal Production Department, Faculty of Agriculture, Al-Azhar University, Assiut, Egypt;
,
W. Senosy
4   Department of Theriogenology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
› Author Affiliations
Further Information

Publication History

Received: 05 June 2014

Accepted after revision: 26 January 2014

Publication Date:
10 January 2018 (online)

Summary

Objectives: The study was designed to investigate the effects of drenching with propylene glycol (PG) on body condition, serum metabolites and milk production during the transition period of dairy buffaloes. Material and methods: Animals were randomly allocated to a control group (n = 5) and a PG group of 10 buffaloes that were drenched with 500 ml of propylene glycol once daily from 10 (9 ± 3) days prepartum until 2 weeks postpartum. Ultrasound measurements of backfat thickness (BFT) were performed weekly, while blood samples were taken at –4, –2, 2, 4, 6, and 8 weeks from parturition for estimation of hematological and biochemical metabolites. Results: At –4, –3, and –2 weeks from calving, BFT did not differ between the two groups, but decreased after calving and was higher for the control group than the PG group at weeks –1 and 1. Hematological analysis revealed insignificant changes between the two groups. Serum concentrations of non-esterified fatty acids (NEFA), β-hydroxybutyric acid (BHBA) and glucose did not differ between the two groups before parturition. At 2 and 4 weeks from parturition, NEFA was higher for the control group than the PG group. Serum concentrations of BHBA were higher at 2, 4, 6, and 8 weeks in control animals than in treated buffaloes. In contrast, the glucose level was significantly increased in PG group when compared to the control group at week 2 postpartum (p < 0.05). Serum concentrations of total cholesterol, triglycerides, total proteins, albumin, and globulins did not differ significantly between the two groups (p > 0.05). Serum enzyme activities of aspartate aminotransferase and γ-glutamyl transferase were significantly higher in the control than in the PG group. In treated buffaloes significantly (p < 0.05) higher average 60-day milk yields were recorded (8.4 ± 0.22 vs. 10.7 ± 0.40 kg/day). Milk composition did not differ between the two groups. Conclusion and clinical relevance: Drenching of dairy buffaloes with propylene glycol may reduce the risk of ketosis, improve the metabolic status, and increase the milk yield.

Zusammenfassung

Ziel: Evaluierung der Effekte der oralen Gabe von Propylenglykol (PG) in der Transitperiode auf Körperkondition, Stoffwechselparameter und Milchleistung von Milchbüffeln. Material und Methoden: Einer Gruppe von 10 Büffeln (PG-Gruppe) wurden 10 (9 ± 3) Tage ante partum (a. p.) bis 14 Tage post partum (p. p.) einmal täglich 500 ml PG über Drenchen verabreicht. Fünf unbehandelte Büffel dienten als Kontrollgruppe. Die Gruppenzuordnung der Tiere erfolgte randomisiert. Im Wochenabstand wurde die Rückenfettdicke (BFT) sonographisch gemessen. Blutproben für die hämatologische und klinisch-chemische Ana lyse wurden 4 und 2 Wochen a. p. sowie 2, 4, 6, 8 Wochen p. p. gewonnen. Ergebnisse: Die BFT differierte 4, 3 und 2 Wochen a. p. zwischen beiden Gruppen nicht. Eine Woche a. p. und 1 Woche p. p. lag sie in der Kontrollgruppe signifikant höher als in der PG-Gruppe. Nach dem Kalben nahm die BFT in beiden Gruppen ab. Die hämatologischen Parameter wiesen nur geringfügige Veränderungen ohne Unterschiede zwischen den Gruppen auf. Die Blutserumkonzentrationen an freien Fettsäuren (NEFA), β-Hydroxybuttersäure (BHB) und Glukose differierten vor der Kalbung nicht signifikant. Zwei und 4 Wochen p. p. war die NEFA-Konzentration und 2, 4, 6 sowie 8 Wochen p. p. die BHB-Konzentration in der Kontrollgruppe signifikant höher als in der PG-Gruppe. Umgekehrt ergab sich in der PG-Gruppe 2 Wochen p. p. eine signifikant höhere Glukosekonzentration (p < 0,05). Die Serumkonzentrationen an Gesamtcholesterol, Triglyzeriden, Gesamtprotein, Albumin und Globulin zeigten zwischen beiden Gruppen keine signifikanten Unterschiede (p > 0,05). Die Serumaktivitäten der Aspartataminotransferase und der γ-Glutamyltransferase waren in der Kontrollgruppe signifikant höher als in der PG-Gruppe. Die mittlere 60-Tage-Milchmengenleistung lag in der PG-Gruppe mit 10,7 ± 0,40 kg signifikant höher als in der Kontrollgruppe mit 8,4 ± 0,22 kg (p < 0,05) bei gleicher Milchzusammensetzung. Schlussfolgerung und klinische Relevanz: Die orale Gabe von PG in der Transitperiode über Drenchen kann das Ketoserisiko reduzieren, die Stoffwechsellage verbessern und die Milchmengenleistung steigern.

 
  • References

  • 1 Aeberhard K, Bruckmaier R, Blun J. Milk yield and composition, nutrition, body conformation traits, body condition scores, fertility and diseases in high-yielding dairy cows. J Vet Med A 2001; 85: 99-110.
  • 2 Association Official Analytical Chemists. Official Methods of the Association Official Analytical Chemists. Washington DC: 1995: 195-230.
  • 3 Brethour JR. The repeatability and accuracy of ultrasound in measuring backfat of cattle. J Anim Sci 1992; 70: 1039-1044.
  • 4 Chibisa GE, Gozho GN, Kessel AG, Olkowski AA, Mutsvangwa T. Effects of peripartum propylene glycol supplementation on nitrogen metabolism, body composition, and gene expression for the major protein degradation pathways in skeletal muscle in dairy cows. J Dairy Sci 2008; 91: 3512-3527.
  • 5 Christensen J, Grummer R, Rasmussen F, Bertics S. Effect of method of delivery of propylene glycol on plasma metabolites of feed-restricted cattle. J Dairy Sci 1997; 80: 563-568.
  • 6 Chung Y, Girard I, Varga G. Effects of feeding dry propylene glycol to early postpartum Holstein dairy cows on production and blood parameters. Animal 2009; 3: 1368-1377.
  • 7 Duffield T, Lissemore K, McBride B, Leslie K. Impact of hyperketonemia in early lactation in dairy cows on health and production. J Dairy Sci 2009; 92: 571-580.
  • 8 Economides S. Comparative studies of sheep and goats milk yield and composition and growth rate of lambs and kids. J Agric Sci 1986; 106: 477-484.
  • 9 Elitok B, Kabu M, Elitok Ö. Evaluation of liver function tests in cows during periparturient period. FÜ Sağlık Bil. Dergisi 2006; 20: 205-209.
  • 10 Ghanem MM, El-Deeb WM. Lecithin cholesterol acyltransferase (LCAT) activity as a predictor for ketosis and parturient haemoglobinuria in Egyptian water buffaloes. Res Vet Sci 2010; 88: 20-25.
  • 11 Grummer RR. Nutritional and management strategies for the prevention of fatty liver in dairy cattle. Vet J 2008; 176: 10-20.
  • 12 Grummer RR, Winkler JC, Bertics SJ, Studer VA. Effect of propylene glycol dosage during feed restriction on metabolites in blood of prepartum Holstein heifers. J Dairy Sci 1994; 77: 3618-3623.
  • 13 Hoedemaker M, Prange D, Zerbe H, Frank J, Daxenberger A, Meyer H. Peripartal propylene glycol supplementation and metabolism, animal health, fertility, and production in dairy cows. J Dairy Sci 2004; 87: 2136-2145.
  • 14 Hussein HA, Westphal A, Staufenbiel R. Pooled serum sample metabolic profiling as a screening tool in dairy herds with a history of ketosis or milk fever. Comp Clin Pathol 2013; 22: 1075-1082.
  • 15 Hussein HA, Westphal A, Staufenbiel R. Relationship between body condition score and ultrasound measurement of backfat thickness in multiparous Holstein dairy cows at different production phases. Aust Vet J 2013; 91: 185-189.
  • 16 Ingvartsen K, Dewhurst R, Friggens N. On the relationship between lactational performance and health: is it yield or metabolic imbalance that cause production diseases in dairy cattle? A position paper. Livest Prod Sci 2003; 83: 277-308.
  • 17 Kristensen NB, Raun BM. Ruminal and intermediary metabolism of propylene glycol in lactating Holstein cows. J Dairy Sci 2007; 90: 4707-4717.
  • 18 LeBlanc S. Monitoring of metabolic health of dairy cattle in the transition period. J Reprod Develop 2010; 56: S29-S35.
  • 19 Lien T, Chang L, Horng Y, Wu C. Effects of propylene glycol on milk production, serum metabolites and reproductive performance during the transition period of dairy cows. Asian-Aust J Anim Sci 2010; 23: 372-378.
  • 20 Lomander H, Frössling J, Ingvartsen K, Gustafsson H, Svensson C. Supplemental feeding with glycerol or propylene glycol of dairy cows in early lactation – Effects on metabolic status, body condition, and milk yield. J Dairy Sci 2012; 95: 2397-2408.
  • 21 Miyoshi S, Pate JL, Palmquist DL. Effects of propylene glycol drenching on energy balance, plasma glucose, plasma insulin, ovarian function and conception in dairy cows. Anim Reprod Sci 2001; 68: 29-43.
  • 22 Moallem U, Katz M, Arieli A, Lehrer H. Effects of peripartum propylene glycol or fats differing in fatty acid profiles on feed intake, production, and plasma metabolites in dairy cows. J Dairy Sci 2007; 90: 3846-3856.
  • 23 Mulligan F, Doherty M. Production diseases of the transition cow. Vet J 2008; 176: 3-9.
  • 24 National Research Council. Nutrient Requirements of Dairy Cattle. 7th. rev. edn Natl Acad Sci; Washington DC: 2001: 15-48.
  • 25 Nielsen NI, Ingvartsen KL. Propylene glycol for dairy cows: A review of the metabolism of propylene glycol and its effects on physiological parameters, feed intake, milk production and risk of ketosis. Anim Feed Sci Technol 2004; 115: 191-213.
  • 26 Oikawa S, Mizunuma Y, Iwasaki Y, Mohamed T. Changes of very low-density lipoprotein concentration in hepatic blood from cows with fasting-induced hepatic lipidosis. Can J Vet Res 2010; 74: 317-320.
  • 27 Pickett MM, Piepenbrink MS, Overton TR. Effects of propylene glycol or fat drench on plasma metabolites, liver composition and production of dairy cows during the periparturient period. J Dairy Sci 2003; 86: 2113-2121.
  • 28 Rukkwamsuk T, Rungruang S, Choothesa A, Wensing T. Effect of propylene glycol on fatty liver development and hepatic fructose 1,6 bisphosphatase activity in periparturient dairy cows. Livest Prod Sci 2005; 95: 95-102.
  • 29 Rukkwamsuk T, Kruip TA, Meijer GA, Wensing T. Hepatic fatty acid composition in periparturient dairy cows with fatty liver induced by intake of a high energy diet in the dry period. J Dairy Sci 1999; 82: 280-287.
  • 30 Rukkwamsuk T, Petploi N, Preechanvinit I, Jongmepornsirisopa P. Effect of oral administration of propylene glycol on serum glucose concentrations in periparturient dairy cows. Kasetsart J Nat Sci 2003; 37: 145-149.
  • 31 Schr der V, Staufenbiel R. Methods to determine body fat reserves in the dairy cow with special regard to ultrasonographic measurement of back fat thickness: Invited Review. J Dairy Sci 2006; 89: 1-14.
  • 32 Seifi H, Gorji-Dooz M, Mohri M, Dalir-Naghadeh B, Farzaneh N. Variations of energy-related biochemical metabolites during transition period in dairy cows. Comp Clin Pathol 2007; 16: 253-258.
  • 33 Shingfield KJ, Jaakkola S, Huhtanen P. Effect of forage conservation method, concentrate level and propylene glycol on diet digestibility, rumen fermentation, blood metabolite concentrations and nutrient utilization of dairy cows. Anim Feed Sci Technol 2002; 97: 1-21.
  • 34 Studer V, Grummer R, Bertics S, Reynolds C. Effect of prepartum propylene glycol administration on periparturient fatty liver in dairy cows. J Dairy Sci 1993; 76: 2931-2939.
  • 35 Tennant BC, Center SA. Chapter 13: Hepatic function. In: Clinical Biochemistry of Domestic Animals. 6th. edn. Kaneko JJ, Harvey JW, Bruss ML. eds. New York: Academic Press; 2008: 379-412.
  • 36 Tharwat M. Ultrasonography as a diagnostic and prognostic approach in cattle and buffaloes with fatty infiltration of the liver. Polish J Vet Sci 2012; 15: 83-93.
  • 37 Turk R, Juretić D, Gereš D, Svetina A, Turk N, Flegar-Meštrić Z. Influence of oxidative stress and metabolic adaptation on PON1 activity and MDA level in transition dairy cows. Anim Reprod Sci 2008; 108: 98-106.
  • 38 Youssef MA, El-Khodery SA, El-deeb WM, Abou El-Amaiem WE. Ketosis in buffalo (Bubalus bubalis): clinical findings and the associated oxidative stress level. Trop Anim Health Prod 2010; 42: 1771-1777.