Establishing calculation method for chemical composition of primitive magma in the Cenozoic in South Central coast region and the adjacent continental shelf of Vietnam

Le Duc Anh, Nguyen Hoang, Phung Van Phach, A. I. Malinovskii, Renat Shakirov, Kasatkin S. R., Golozubov V. V., Bui Van Nam, Mai Duc Dong, Ngo Bich Huong, Pham Thu Hien
Author affiliations

Authors

  • Le Duc Anh Institute of Marine Geology and Geophysics, VAST, Vietnam Graduate University of Science and Technology, VAST, Vietnam
  • Nguyen Hoang Graduate University of Science and Technology, VAST, Vietnam Institute of Geological Sciences, VAST, Vietnam
  • Phung Van Phach Institute of Marine Geology and Geophysics, VAST, Vietnam Graduate University of Science and Technology, VAST, Vietnam
  • A. I. Malinovskii Far East Geological Institute of Far East Branch of Russian Academy of Sciences, Vladivostok, Russia
  • Renat Shakirov Il’ichev Pacific Oceanographical Institute, FEB RAS, Vladivostok, Russia
  • Kasatkin S. R. Far East Geological Institute of Far East Branch of Russian Academy of Sciences, Vladivostok, Russia
  • Golozubov V. V. Far East Geological Institute of Far East Branch of Russian Academy of Sciences, Vladivostok, Russia
  • Bui Van Nam Institute of Marine Geology and Geophysics, VAST, Vietnam
  • Mai Duc Dong Institute of Marine Geology and Geophysics, VAST, Vietnam
  • Ngo Bich Huong Institute of Marine Geology and Geophysics, VAST, Vietnam
  • Pham Thu Hien Institute of Marine Geology and Geophysics, VAST, Vietnam

DOI:

https://doi.org/10.15625/1859-3097/19/3B/14515

Keywords:

South Central Vietnam, primitive magma, Cenozoic volcanic eruption.

Abstract

The calculations which determine the chemical composition of the primitive magma are simple but they show changes in the temperature and pressure states of the magma source. The method is based on the addition of the chemical composition of the Olivine to the major element composition of the eruptive rocks which follows the formula: Ci = Ci-1+ 0.1 * Ci-1Ol. In accordance with the characteristics of the study area, we have made new additions to the calculation method. The calculation results are highly accurate when tested and compared with the chemical composition of the eruptive rocks. The chemical composition of the primitive magma solution is used to calculate the temperature and pressure states in the magma source. The results show that there is a difference in temperature and pressure in the source at different tectonic positions in the study area. Accordingly, the South Central coast region and the adjacent continental shelf are divided into two main types of eruptions. The first type of volcanic eruptions occurs at locations where major faults intersect and they are located north of the study area. The second type of volcanic eruptions in the form of a single volcano is located to the south of the study area and the southeastern continental shelf, and occurs in intracontinental extension structure.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

O’hara, M. J., 1968. The bearing of phase equilibria studies in synthetic and natural systems on the origin and evolution of basic and ultrabasic rocks. Earth-Science Reviews, 4, 69–133.

Hirose, K., and Kushiro, I., 1993. Partial melting of dry peridotites at high pressures: determination of compositions of melts segregated from peridotite using aggregates of diamond. Earth and Planetary Science Letters, 114(4), 477–489.

Kushiro, I., 1996. Partial melting of fertile mantle peridotite at high pressures: an experimental study using aggregates of diamond. Geophysical Monograph-American Geophysical Union, 95, 109–122.

Roeder, P. L., and Emslie, R., 1970. Olivine-liquid equilibrium. Contributions to mineralogy and petrology, 29(4), 275–289.

Takahashi, E., and Kushiro, I., 1983. Melting of a dry peridotite at high pressures and basalt magma genesis. American Mineralogist, 68(9–10), 859–879.

Hauri, E. H., 1996. Major-element variability in the Hawaiian mantle plume. Nature, 382(6590), 415–419.

Ren, Z. Y., Ingle, S., Takahashi, E., Hirano, N., and Hirata, T., 2005. The chemical structure of the Hawaiian mantle plume. Nature, 436(7052), 837–840.

Ren, Z. Y., Hanyu, T., Miyazaki, T., Chang, Q., Kawabata, H., Takahashi, T., ... and Tatsumi, Y., 2009. Geochemical differences of the Hawaiian shield lavas: implications for melting process in the heterogeneous Hawaiian plume. Journal of Petrology, 50(8), 1553–1573.

Sobolev, A. V., Hofmann, A. W., Sobolev, S. V., and Nikogosian, I. K., 2005. An olivine-free mantle source of Hawaiian shield basalts. Nature, 434(7033), 590–597.

Herzberg, C., 2006. Petrology and thermal structure of the Hawaiian plume from Mauna Kea volcano. Nature, 444(7119), 605–609.

Hoang, N., Flower, M. F., and Carlson, R. W., 1996. Major, trace element, and isotopic compositions of Vietnamese basalts: Interaction of hydrous EM1-rich asthenosphere with thinned Eurasian lithosphere. Geochimica et Cosmochimica Acta, 60(22), 4329–4351.

Metcalfe, I., 1999. Gondwana dispersion and Asian accretion: an overview. Gondwana dispersion and Asian accretion, 9–28.

Metcalfe, I., 1996. Pre-Cretaceous evolution of SE Asian terranes. Geological Society, London, Special Publications, 106(1), 97–122. doi:10.1144/GSL.SP.1996.106.01.09.

Metcalfe, I., 2011. Tectonic framework and Phanerozoic evolution of Sundaland. Gondwana Research, 19(1), 3–21. doi:10.1016/j.gr.2010.02.016.

Tr. V. Trị và Vũ Khúc, 2011. Địa chất và tài nguyên thiên nhiên Việt Nam. Sách chuyên khảo.

Holloway, N. H., 1982. North Palawan block, Philippines - Its relation to Asian mainland and role in evolution of South China Sea. AAPG Bulletin, 66(9), 1355–1383.

Honza, E., and Fujioka, K., 2004. Formation of arcs and backarc basins inferred from the tectonic evolution of Southeast Asia since the Late Cretaceous. Tectonophysics, 384(1–4), 23–53. doi:10.1016/j.tecto.2004.02.006.

Hutchison, C. S., 2014. Tectonic evolution of Southeast Asia. Bulletin of the Geological Society of Malaysia, 60, 1–18.

Tapponnier, P., Peltzer, G. L. D. A. Y., Le Dain, A. Y., Armijo, R., and Cobbold, P., 1982. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine. Geology, 10(12), 611–616.

Tapponnier, P., Peltzer, G., and Armijo, R., 1986. On the mechanics of the collision between India and Asia. Geological Society, London, Special Publications, 19(1), 113–157.

Hall, R., 2002. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations. Journal of Asian Earth Sciences, 20(4), 353–431. doi:10.1016/S0012-821X(04)00070-6.

Leloup, P. H., Lacassin, R., Tapponnier, P., Schärer, U., Zhong, D., Liu, X., ... and Trinh, P. T., 1995. The Ailao Shan-Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina. Tectonophysics, 251(1–4), 3–84. doi: 10.1016/0040-1951(95)00070-4, 1995.

Barr, S. M., and MacDonald, A. S., 1981. Geochemistry and geochronology of late Cenozoic basalts of Southeast Asia. Geological Society of America Bulletin, 92(8_Part_II), 1069–1142.

Kudrass, H. R., Wiedicke, M., Cepek, P., Kreuzer, H., and Müller, P., 1986. Mesozoic and Cainozoic rocks dredged from the South China Sea (Reed Bank area) and Sulu Sea and their significance for plate-tectonic reconstructions. Marine and Petroleum Geology, 3(1), 19–30.

Tu, K., Flower, M. F., Carlson, R. W., Xie, G., Chen, C. Y., and Zhang, M., 1992. Magmatism in the South China Basin: 1. Isotopic and trace-element evidence for an endogenous Dupal mantle component. Chemical Geology, 97(1–2), 47–63.

Rangin, C., Huchon, P., Le Pichon, X., Bellon, H., Lepvrier, C., Roques, D., ... and Van Quynh, P., 1995. Cenozoic deformation of central and south Vietnam. Tectonophysics, 251(1–4), 179–196.

Flower, M. F., Chung, S. L., Lo, C. H., and Lee, T. Y. (Eds.), 1998. Mantle dynamics and plate interactions in East Asia (Vol. 27). American Geophysical Union.

Yan, P., Deng, H., Liu, H., Zhang, Z., and Jiang, Y., 2006. The temporal and spatial distribution of volcanism in the South China Sea region. Journal of Asian Earth Sciences, 27(5), 647–659.

Yan, Q., Shi, X., Wang, K., Bu, W., and Xiao, L., 2008. Major element, trace element, and Sr, Nd and Pb isotope studies of Cenozoic basalts from the South China Sea. Science in China Series D: Earth Sciences, 51(4), 550–566.

Yan, Q., Shi, X., and Castillo, P. R., 2014. The late Mesozoic–Cenozoic tectonic evolution of the South China Sea: a petrologic perspective. Journal of Asian Earth Sciences, 85, 178–201.

Wang, X. C., Li, Z. X., Li, X. H., Li, J., Liu, Y., Long, W. G., ... and Wang, F., 2011. Temperature, pressure, and composition of the mantle source region of Late Cenozoic basalts in Hainan Island, SE Asia: a consequence of a young thermal mantle plume close to subduction zones?. Journal of Petrology, 53(1), 177–233.

Hoang, N., Flower, M. F., Xuan, P. T., Quy, H. V., and Son, T. T., 2013. Collision-induced basalt eruptions at Pleiku and Buon Me Thuot, south-central Viet Nam. Journal of Geodynamics, 69, 65–83.

Hoang, N., Shinjo, R., Huong, T. T., Pécskay, Z., and Bac, D. T., 2019. Pleistocene basaltic volcanism in the Krông Nô area and vicinity, Dac Nong Province (Vietnam). Journal of Asian Earth Sciences, 103903.

Hoang, N., and Flower, M., 1998. Petrogenesis of Cenozoic basalts from Vietnam: implication for origins of a ‘diffuse igneous province’. Journal of Petrology, 39(3), 369–395.

Nguễn Hoàng, Phan Trọng Trịnh, 2009. Tổng hợp đặc điểm thạch học và địa hóa đá núi lửa Neogen - Đệ tứ và động lực manti khu vực Biển Đông và các vùng lân cận. Tạp chí Địa chất, A312, 5–6.

Koloskov, A. V., Fedorov, P. I., and Rashidov, V. A., 2016. New data on products composition of the Quaternary volcanic activity in the shelf zone of NW margins of the South China Sea and the problem of asthenospheric diapirism.

Hoang, N., Shakirov, R. B., and Huong, T. T., 2017. Geochemistry of late miocene-pleistocene basalts in the Phu Quy island area (East Vietnam Sea): Implication for mantle source feature and melt generation. Vietnam Journal of Earth Sciences, 39(3), 270–288.

An, A. R., Choi, S. H., Yu, Y., and Lee, D. C., 2017. Petrogenesis of Late Cenozoic basaltic rocks from southern Vietnam. Lithos, 272, 192–204.

Yamashita, S., and Tatsumi, Y., 1994. Thermal and geochemical evolution of the mantle wedge in the northeast Japan arc: 2. Contribution from geochemistry. Journal of Geophysical Research: Solid Earth, 99(B11), 22285–22293.

Scarrow, J. H., and Cox, K. G., 1995. Basalts generated by decompressive adiabatic melting of a mantle plume: a case study from the Isle of Skye, NW Scotland. Journal of Petrology, 36(1), 3–22.

Turner, S., and Hawkesworth, C., 1995. The nature of the sub-continental mantle: constraints from the major-element composition of continental flood basalts. Chemical Geology, 120(3–4), 295–314.

Tamura, Y., Yuhara, M., and Ishii, T., 2000. Primary arc basalts from Daisen volcano, Japan: equilibrium crystal fractionation versus disequilibrium fractionation during supercooling. Journal of Petrology, 41(3), 431–448.

Leeman, W. P., Lewis, J. F., Evarts, R. C., Conrey, R. M., and Streck, M. J., 2005. Petrologic constraints on the thermal structure of the Cascades arc. Journal of Volcanology and Geothermal Research, 140(1–3), 67–105.

Putirka, K. D., 2005. Mantle potential temperatures at Hawaii, Iceland, and the mid‐ocean ridge system, as inferred from olivine phenocrysts: Evidence for thermally driven mantle plumes. Geochemistry, Geophysics, Geosystems, 6(5), 1–14.

Ghiorso, M. S., Hirschmann, M. M., Reiners, P. W., and Kress, V. C., 2002. The pMELTS: A revision of MELTS for improved calculation of phase relations and major element partitioning related to partial melting of the mantle to 3 GPa. Geochemistry, Geophysics, Geosystems, 3(5), 1-35. DOI: 10.1029/2001GC000217.

Albarede, F., 1992. How deep do common basaltic magmas form and differentiate?. Journal of Geophysical Research: Solid Earth, 97(B7), 10997–11009.

Putirka, K. D., 2008. Thermometers and barometers for volcanic systems. Reviews in mineralogy and geochemistry, 69(1), 61–120.

Hoang, N., Flower, M. F., and Carlson, R. W., 1996. Major, trace element, and isotopic compositions of Vietnamese basalts: Interaction of hydrous EM1-rich asthenosphere with thinned Eurasian lithosphere. Geochimica et Cosmochimica Acta, 60(22), 4329–4351.

Ph. T. Xuân, Ng. Hoàng, 2002. Đặc điểm thạch học và thành phân nguyên tố chính trong basalt Kainozoi muộn tại Việt Nam. Tạp chí Các Khoa học về Trái đất, 24(1), 33–42.

Phach, P. V., and Anh, L. D., 2018. Tectonic evolution of the southern part of Central Viet Nam and the adjacent area. Geodynamics & Tectonophysics, 9(3), 801–825.

Downloads

Published

21-10-2019

How to Cite

Anh, L. D., Hoang, N., Phach, P. V., Malinovskii, A. I., Shakirov, R., R., K. S., V., G. V., Nam, B. V., Dong, M. D., Huong, N. B., & Hien, P. T. (2019). Establishing calculation method for chemical composition of primitive magma in the Cenozoic in South Central coast region and the adjacent continental shelf of Vietnam. Vietnam Journal of Marine Science and Technology, 19(3B), 55–70. https://doi.org/10.15625/1859-3097/19/3B/14515

Issue

Section

Articles

Most read articles by the same author(s)