
LOAM: Lidar Odometry and Mapping in Real-time

Ji Zhang and Sanjiv Singh

Abstract— We propose a real-time method for odometry and
mapping using range measurements from a 2-axis lidar moving
in 6-DOF. The problem is hard because the range measurements
are received at different times, and errors in motion estimation
can cause mis-registration of the resulting point cloud. To date,
coherent 3D maps can be built by off-line batch methods, often
using loop closure to correct for drift over time. Our method
achieves both low-drift and low-computational complexity with-
out the need for high accuracy ranging or inertial measurements.
The key idea in obtaining this level of performance is the
division of the complex problem of simultaneous localization and
mapping, which seeks to optimize a large number of variables
simultaneously, by two algorithms. One algorithm performs
odometry at a high frequency but low fidelity to estimate velocity
of the lidar. Another algorithm runs at a frequency of an order of
magnitude lower for fine matching and registration of the point
cloud. Combination of the two algorithms allows the method to
map in real-time. The method has been evaluated by a large set
of experiments as well as on the KITTI odometry benchmark.
The results indicate that the method can achieve accuracy at the
level of state of the art offline batch methods.

I. INTRODUCTION

3D mapping remains a popular technology [1]–[3]. Mapping
with lidars is common as lidars can provide high frequency
range measurements where errors are relatively constant irre-
spective of the distances measured. In the case that the only
motion of the lidar is to rotate a laser beam, registration of the
point cloud is simple. However, if the lidar itself is moving
as in many applications of interest, accurate mapping requires
knowledge of the lidar pose during continuous laser ranging.
One common way to solve the problem is using independent
position estimation (e.g. by a GPS/INS) to register the laser
points into a fixed coordinate system. Another set of methods
use odometry measurements such as from wheel encoders or
visual odometry systems [4], [5] to register the laser points.
Since odometry integrates small incremental motions over
time, it is bound to drift and much attention is devoted to
reduction of the drift (e.g. using loop closure).

Here we consider the case of creating maps with low-
drift odometry using a 2-axis lidar moving in 6-DOF. A key
advantage of using a lidar is its insensitivity to ambient lighting
and optical texture in the scene. Recent developments in lidars
have reduced their size and weight. The lidars can be held by
a person who traverses an environment [6], or even attached
to a micro aerial vehicle [7]. Since our method is intended to
push issues related to minimizing drift in odometry estimation,
it currently does not involve loop closure.

The method achieves both low-drift and low-computational
complexity without the need for high accuracy ranging or

J. Zhang and S. Singh are with the Robotics Institute at Carnegie Mellon
University. Emails: zhangji@cmu.edu and ssingh@cmu.edu.

The paper is based upon work supported by the National Science Founda-
tion under Grant No. IIS-1328930.

Lidar

Lidar
Mapping

Odometry

Fig. 1. The method aims at motion estimation and mapping using a moving
2-axis lidar. Since the laser points are received at different times, distortion is
present in the point cloud due to motion of the lidar (shown in the left lidar
cloud). Our proposed method decomposes the problem by two algorithms
running in parallel. An odometry algorithm estimates velocity of the lidar and
corrects distortion in the point cloud, then, a mapping algorithm matches and
registers the point cloud to create a map. Combination of the two algorithms
ensures feasibility of the problem to be solved in real-time.

inertial measurements. The key idea in obtaining this level of
performance is the division of the typically complex problem
of simultaneous localization and mapping (SLAM) [8], which
seeks to optimize a large number of variables simultaneously,
by two algorithms. One algorithm performs odometry at a high
frequency but low fidelity to estimate velocity of the lidar. An-
other algorithm runs at a frequency of an order of magnitude
lower for fine matching and registration of the point cloud.
Although unnecessary, if an IMU is available, a motion prior
can be provided to help account for high frequency motion.
Specifically, both algorithms extract feature points located on
sharp edges and planar surfaces, and match the feature points
to edge line segments and planar surface patches, respectively.
In the odometry algorithm, correspondences of the feature
points are found by ensuring fast computation. In the mapping
algorithm, the correspondences are determined by examining
geometric distributions of local point clusters, through the
associated eigenvalues and eigenvectors.

By decomposing the original problem, an easier problem is
solved first as online motion estimation. After which, mapping
is conducted as batch optimization (similar to iterative closest
point (ICP) methods [9]) to produce high-precision motion
estimates and maps. The parallel algorithm structure ensures
feasibility of the problem to be solved in real-time. Further,
since the motion estimation is conducted at a higher frequency,
the mapping is given plenty of time to enforce accuracy.
When running at a lower frequency, the mapping algorithm
is able to incorporate a large number of feature points and use
sufficiently many iterations for convergence.

II. RELATED WORK

Lidar has become a useful range sensor in robot navigation
[10]. For localization and mapping, most applications use 2D
lidars [11]. When the lidar scan rate is high compared to
its extrinsic motion, motion distortion within the scans can

mailto:zhangji@cmu.edu
mailto:ssingh@cmu.edu

often be neglected. In this case, standard ICP methods [12]
can be used to match laser returns between different scans.
Additionally, a two-step method is proposed to remove the
distortion [13]: an ICP based velocity estimation step is fol-
lowed by a distortion compensation step, using the computed
velocity. A similar technique is also used to compensate for the
distortion introduced by a single-axis 3D lidar [14]. However,
if the scanning motion is relatively slow, motion distortion
can be severe. This is especially the case when a 2-axis
lidar is used since one axis is typically much slower than
the other. Often, other sensors are used to provide velocity
measurements, with which, the distortion can be removed. For
example, the lidar cloud can be registered by state estimation
from visual odometry integrated with an IMU [15]. When
multiple sensors such as a GPS/INS and wheel encoders are
available concurrently, the problem is usually solved through
an extended Kalman filer [16] or a particle filter [1]. These
methods can create maps in real-time to assist path planning
and collision avoidance in robot navigation.

If a 2-axis lidar is used without aiding from other sen-
sors, motion estimation and distortion correction become one
problem. A method used by Barfoot et al. is to create visual
images from laser intensity returns, and match visually distinct
features [17] between images to recover motion of a ground
vehicle [18]–[21]. The vehicle motion is modeled as constant
velocity in [18], [19] and with Gaussian processes in [20],
[21]. Our method uses a similar linear motion model as [18],
[19] in the odometry algorithm, but with different types of
features. The methods [18]–[21] involve visual features from
intensity images and require dense point cloud. Our method
extracts and matches geometric features in Cartesian space and
has a lower requirement on the cloud density.

The approach closest to ours is that of Bosse and Zlot [3],
[6], [22]. They use a 2-axis lidar to obtain point cloud which
is registered by matching geometric structures of local point
clusters [22]. Further, they use multiple 2-axis lidars to map
an underground mine [3]. This method incorporates an IMU
and uses loop closure to create large maps. Proposed by the
same authors, Zebedee is a mapping device composed of a
2D lidar and an IMU attached to a hand-bar through a spring
[6]. Mapping is conducted by hand nodding the device. The
trajectory is recovered by a batch optimization method that
processes segmented datasets with boundary constraints added
between the segments. In this method, the measurements of the
IMU are used to register the laser points and the optimization
is used to correct the IMU biases. In essence, Bosse and
Zlot’s methods require batch processing to develop accurate
maps and therefore are unsuitable for applications where maps
are needed in real-time. In comparison, the proposed method
in real-time produces maps that are qualitatively similar to
those by Bosse and Zlot. The distinction is that our method
can provide motion estimates for guidance of an autonomous
vehicle. Further, the method takes advantage of the lidar
scan pattern and point cloud distribution. Feature matching
is realized ensuring computation speed and accuracy in the
odometry and mapping algorithms, respectively.

III. NOTATIONS AND TASK DESCRIPTION

The problem addressed in this paper is to perform ego-
motion estimation with point cloud perceived by a 3D lidar,
and build a map for the traversed environment. We assume that
the lidar is pre-calibrated. We also assume that the angular and
linear velocities of the lidar are smooth and continuous over
time, without abrupt changes. The second assumption will be
released by usage of an IMU, in Section VII-B.

As a convention in this paper, we use right uppercase
superscription to indicate the coordinate systems. We define
a sweep as the lidar completes one time of scan coverage. We
use right subscription k, k ∈ Z+ to indicate the sweeps, and
Pk to indicate the point cloud perceived during sweep k. Let
us define two coordinate systems as follows.
• Lidar coordinate system {L} is a 3D coordinate system

with its origin at the geometric center of the lidar. The x-
axis is pointing to the left, the y-axis is pointing upward,
and the z-axis is pointing forward. The coordinates of a
point i, i ∈ Pk, in {Lk} are denoted as XL(k,i).

• World coordinate system {W} is a 3D coordinate system
coinciding with {L} at the initial position. The coordi-
nates of a point i, i ∈ Pk, in {Wk} are XW(k,i).

With assumptions and notations made, our lidar odometry
and mapping problem can be defined as

Problem: Given a sequence of lidar cloud Pk, k ∈ Z+,
compute the ego-motion of the lidar during each sweep k,
and build a map with Pk for the traversed environment.

IV. SYSTEM OVERVIEW

A. Lidar Hardware

The study of this paper is validated on, but not limited to
a custom built 3D lidar based on a Hokuyo UTM-30LX laser
scanner. Through the paper, we will use data collected from the
lidar to illustrate the method. The laser scanner has a field of
view of 180◦ with 0.25◦ resolution and 40 lines/sec scan rate.
The laser scanner is connected to a motor, which is controlled
to rotate at an angular speed of 180◦/s between −90◦ and 90◦

with the horizontal orientation of the laser scanner as zero.
With this particular unit, a sweep is a rotation from −90◦ to
90◦ or in the inverse direction (lasting for 1s). Here, note that
for a continuous spinning lidar, a sweep is simply a semi-
spherical rotation. An onboard encoder measures the motor
rotation angle with a resolution of 0.25◦, with which, the laser
points are projected into the lidar coordinates, {L}.

Fig. 2. The 3D lidar used in this study consists of a Hokuyo laser scanner
driven by a motor for rotational motion, and an encoder that measures the
rotation angle. The laser scanner has a field of view of 180◦ with a resolution
of 0.25◦. The scan rate is 40 lines/sec. The motor is controlled to rotate from
−90◦ to 90◦ with the horizontal orientation of the laser scanner as zero.

Scan Plane

Scan Plane

LaserLaser

෠࣪ ௞࣪
௞࣪

ܣ

݆
݈

݆ ݈
݉

௞′ࢀ௞ାଵࢀ

 ଵݐ ଶݐ ௞ݐ ௞ାଵݐ ݐ

௞࣪
௞࣪ାଵ ത࣪௞

௞ݐ ௞ାଵݐ ݐ

 ௞ାଵࢀ ௞′ࢀ
࣫௞ ෠࣪௞ାଵ

Fig. 3. Block diagram of the lidar odometry and mapping software system.

B. Software System Overview

Fig. 3 shows a diagram of the software system. Let P̂ be
the points received in a laser scan. During each sweep, P̂ is
registered in {L}. The combined point cloud during sweep
k forms Pk. Then, Pk is processed in two algorithms. The
lidar odometry takes the point cloud and computes the motion
of the lidar between two consecutive sweeps. The estimated
motion is used to correct distortion in Pk. The algorithm runs
at a frequency around 10Hz. The outputs are further processed
by lidar mapping, which matches and registers the undistorted
cloud onto a map at a frequency of 1Hz. Finally, the pose
transforms published by the two algorithms are integrated to
generate a transform output around 10Hz, regarding the lidar
pose with respect to the map. Section V and VI present the
blocks in the software diagram in detail.

V. LIDAR ODOMETRY

A. Feature Point Extraction

We start with extraction of feature points from the lidar
cloud, Pk. The lidar presented in Fig. 2 naturally generates
unevenly distributed points in Pk. The returns from the laser
scanner has a resolution of 0.25◦ within a scan. These points
are located on a scan plane. However, as the laser scanner
rotates at an angular speed of 180◦/s and generates scans at
40Hz, the resolution in the perpendicular direction to the scan
planes is 180◦/40 = 4.5◦. Considering this fact, the feature
points are extracted from Pk using only information from
individual scans, with co-planar geometric relationship.

We select feature points that are on sharp edges and planar
surface patches. Let i be a point in Pk, i ∈ Pk, and let S be the
set of consecutive points of i returned by the laser scanner in
the same scan. Since the laser scanner generates point returns
in CW or CCW order, S contains half of its points on each
side of i and 0.25◦ intervals between two points. Define a term
to evaluate the smoothness of the local surface,

c =
1

|S| · ||XL(k,i)||
||
∑

j∈S,j 6=i

(XL(k,i) − XL(k,j))||. (1)

The points in a scan are sorted based on the c values, then
feature points are selected with the maximum c’s, namely,
edge points, and the minimum c’s, namely planar points. To
evenly distribute the feature points within the environment, we
separate a scan into four identical subregions. Each subregion
can provide maximally 2 edge points and 4 planar points. A
point i can be selected as an edge or a planar point only if its
c value is larger or smaller than a threshold, and the number
of selected points does not exceed the maximum.

While selecting feature points, we want to avoid points
whose surrounded points are selected, or points on local planar
surfaces that are roughly parallel to the laser beams (point B
in Fig. 4(a)). These points are usually considered as unreliable.
Also, we want to avoid points that are on boundary of occluded
regions [23]. An example is shown in Fig. 4(b). Point A
is an edge point in the lidar cloud because its connected
surface (the dotted line segment) is blocked by another object.
However, if the lidar moves to another point of view, the
occluded region can change and become observable. To avoid
the aforementioned points to be selected, we find again the set
of points S. A point i can be selected only if S does not form
a surface patch that is roughly parallel to the laser beam, and
there is no point in S that is disconnected from i by a gap in
the direction of the laser beam and is at the same time closer
to the lidar then point i (e.g. point B in Fig. 4(b)).

In summary, the feature points are selected as edge points
starting from the maximum c value, and planar points starting
from the minimum c value, and if a point is selected,
• The number of selected edge points or planar points

cannot exceed the maximum of the subregion, and

• None of its surrounding point is already selected, and

• It cannot be on a surface patch that is roughly parallel to
the laser beam, or on boundary of an occluded region.

An example of extracted feature points from a corridor scene
is shown in Fig. 5. The edge points and planar points are
labeled in yellow and red colors, respectively.

B. Finding Feature Point Correspondence

The odometry algorithm estimates motion of the lidar within
a sweep. Let tk be the starting time of a sweep k. At the end
of each sweep, the point cloud perceived during the sweep,

Scan Plane

Laser

(a)

(b)

Fig. 4. (a) The solid line segments represent local surface patches. Point A
is on a surface patch that has an angle to the laser beam (the dotted orange
line segments). Point B is on a surface patch that is roughly parallel to the
laser beam. We treat B as a unreliable laser return and do not select it as a
feature point. (b) The solid line segments are observable objects to the laser.
Point A is on the boundary of an occluded region (the dotted orange line
segment), and can be detected as an edge point. However, if viewed from a
different angle, the occluded region can change and become observable. We
do not treat A as a salient edge point or select it as a feature point.

Fig. 5. An example of extracted edge points (yellow) and planar points (red)
from lidar cloud taken in a corridor. Meanwhile, the lidar moves toward the
wall on the left side of the figure at a speed of 0.5m/s, this results in motion
distortion on the wall.

Pk, is reprojected to time stamp tk+1, illustrated in Fig. 6.
We denote the reprojected point cloud as P̄k. During the next
sweep k+1, P̄k is used together with the newly received point
cloud, Pk+1, to estimate the motion of the lidar.

Let us assume that both P̄k and Pk+1 are available for now,
and start with finding correspondences between the two lidar
clouds. With Pk+1, we find edge points and planar points
from the lidar cloud using the methodology discussed in the
last section. Let Ek+1 and Hk+1 be the sets of edge points
and planar points, respectively. We will find edge lines from
P̄k as the correspondences for the points in Ek+1, and planar
patches as the correspondences for those in Hk+1.

Note that at the beginning of sweep k+1, Pk+1 is an empty
set, which grows during the course of the sweep as more points
are received. The lidar odometry recursively estimates the 6-
DOF motion during the sweep, and gradually includes more
points as Pk+1 increases. At each iteration, Ek+1 andHk+1 are
reprojected to the beginning of the sweep using the currently
estimated transform. Let Ẽk+1 and H̃k+1 be the reprojected
point sets. For each point in Ẽk+1 and H̃k+1, we are going to
find the closest neighbor point in P̄k. Here, P̄k is stored in a
3D KD-tree [24] for fast index.

Fig. 7(a) represents the procedure of finding an edge line
as the correspondence of an edge point. Let i be a point in
Ẽk+1, i ∈ Ẽk+1. The edge line is represented by two points.
Let j be the closest neighbor of i in P̄k, j ∈ P̄k, and let l
be the closest neighbor of i in the two consecutive scans to
the scan of j. (j, l) forms the correspondence of i. Then, to
verify both j and l are edge points, we check the smoothness
of the local surface based on (1). Here, we particularly require
that j and l are from different scans considering that a single
scan cannot contain more than one points from the same edge
line. There is only one exception where the edge line is on the

෠࣪ ௞࣪
௞࣪

ܣ

݆
݈

݆ ݈
݉

௞′ࢀ௞ାଵࢀ

 ଵݐ ଶݐ ௞ݐ ௞ାଵݐ ݐ

௞࣪
௞࣪ାଵ ത࣪௞

௞ݐ ௞ାଵݐ ݐ

Fig. 6. Reprojecting point cloud to the end of a sweep. The blue colored
line segment represents the point cloud perceived during sweep k, Pk . At
the end of sweep k, Pk is reprojected to time stamp tk+1 to obtain P̄k

(the green colored line segment). Then, during sweep k + 1, P̄k and the
newly perceived point cloud Pk+1 (the orange colored line segment) are
used together to estimate the lidar motion.

෠࣪ ௞࣪
௞࣪

ܣ

݆
݈

݆ ݈
݉

௞′ࢀ௞ାଵࢀ

 ଵݐ ଶݐ ௞ݐ ௞ାଵݐ ݐ

௞࣪
௞࣪ାଵ ത࣪௞

௞ݐ ௞ାଵݐ ݐ

 ௞ାଵࢀ ௞′ࢀ
࣫௞ ෠࣪௞

(a)

෠࣪ ௞࣪
௞࣪

ܣ

݆
݈

݆ ݈
݉

௞′ࢀ௞ାଵࢀ

 ଵݐ ଶݐ ௞ݐ ௞ାଵݐ ݐ

௞࣪
௞࣪ାଵ ത࣪௞

௞ݐ ௞ାଵݐ ݐ

 ௞ାଵࢀ ௞′ࢀ
࣫௞ ෠࣪௞

(b)

Fig. 7. Finding an edge line as the correspondence for an edge point in Ẽk+1

(a), and a planar patch as the correspondence for a planar point in H̃k+1 (b).
In both (a) and (b), j is the closest point to the feature point, found in P̄k . The
orange colored lines represent the same scan of j, and the blue colored lines
are the two consecutive scans. To find the edge line correspondence in (a),
we find another point, l, on the blue colored lines, and the correspondence is
represented as (j, l). To find the planar patch correspondence in (b), we find
another two points, l and m, on the orange and blue colored lines, respectively.
The correspondence is (j, l, m).

scan plane. If so, however, the edge line is degenerated and
appears as a straight line on the scan plane, and feature points
on the edge line should not be extracted in the first place.

Fig. 7(b) shows the procedure of finding a planar patch as
the correspondence of a planar point. Let i be a point in H̃k+1,
i ∈ H̃k+1. The planar patch is represented by three points.
Similar to the last paragraph, we find the closest neighbor of
i in P̄k, denoted as j. Then, we find another two points, l
and m, as the closest neighbors of i, one in the same scan of
j, and the other in the two consecutive scans to the scan of
j. This guarantees that the three points are non-collinear. To
verify that j, l, and m are all planar points, we check again
the smoothness of the local surface based on (1).

With the correspondences of the feature points found, now
we derive expressions to compute the distance from a feature
point to its correspondence. We will recover the lidar motion
by minimizing the overall distances of the feature points in the
next section. We start with edge points. For a point i ∈ Ẽk+1,
if (j, l) is the corresponding edge line, j, l ∈ P̄k, the point to
line distance can be computed as

dE =

∣∣∣(X̃
L

(k+1,i) − X̄L(k,j))× (X̃
L

(k+1,i) − X̄L(k,l))
∣∣∣∣∣∣X̄L(k,j) − X̄L(k,l)

∣∣∣ , (2)

where X̃
L

(k+1,i), X̄L(k,j), and X̄L(k,l) are the coordinates of points
i, j, and l in {L}, respectively. Then, for a point i ∈ H̃k+1,
if (j, l, m) is the corresponding planar patch, j, l,m ∈ P̄k,
the point to plane distance is

dH =

∣∣∣∣∣ (X̃
L

(k+1,i) − X̄L(k,j))
((X̄L(k,j) − X̄L(k,l))× (X̄L(k,j) − X̄L(k,m)))

∣∣∣∣∣∣∣∣(X̄L(k,j) − X̄L(k,l))× (X̄L(k,j) − X̄L(k,m))
∣∣∣ , (3)

where X̄L(k,m) is the coordinates of point m in {L}.

C. Motion Estimation

The lidar motion is modeled with constant angular and
linear velocities during a sweep. This allows us to linear
interpolate the pose transform within a sweep for the points
that are received at different times. Let t be the current time
stamp, and recall that tk+1 is the starting time of sweep

k+1. Let TLk+1 be the lidar pose transform between [tk+1, t].
TLk+1 contains rigid motion of the lidar in 6-DOF, TLk+1 =
[tx, ty, tz, θx, θy, θz]

T , where tx, ty , and tz are translations
along the x-, y-, and z- axes of {L}, respectively, and θx,
θy , and θz are rotation angles, following the right-hand rule.
Given a point i, i ∈ Pk+1, let ti be its time stamp, and let
TL(k+1,i) be the pose transform between [tk+1, ti]. TL(k+1,i)

can be computed by linear interpolation of TLk+1,

TL(k+1,i) =
ti − tk+1

t− tk+1
TLk+1. (4)

Recall that Ek+1 and Hk+1 are the sets of edge points and
planar points extracted from Pk+1, and Ẽk+1 and H̃k+1 are the
sets of points reprojected to the beginning of the sweep, tk+1.
To solved the lidar motion, we need to establish a geometric
relationship between Ek+1 and Ẽk+1, or Hk+1 and H̃k+1.
Using the transform in (4), we can derive,

XL(k+1,i) = RX̃
L

(k+1,i) + TL(k+1,i)(1 : 3), (5)

where XL(k+1,i) is the coordinates of a point i in Ek+1 or

Hk+1, X̃
L

(k+1,i) is the corresponding point in Ẽk+1 or H̃k+1,
TL(k+1,i)(a : b) is the a-th to b-th entries of TL(k+1,i), and R is
a rotation matrix defined by the Rodrigues formula [25],

R = eω̂θ = I + ω̂ sin θ + ω̂2(1− cos θ). (6)

In the above equation, θ is the magnitude of the rotation,

θ = ||TL(k+1,i)(4 : 6)||, (7)

ω is a unit vector representing the rotation direction,

ω = TL(k+1,i)(4 : 6)/||TL(k+1,i)(4 : 6)||, (8)

and ω̂ is the skew symmetric matrix of ω [25].
Recall that (2) and (3) compute the distances between points

in Ẽk+1 and H̃k+1 and their correspondences. Combining (2)
and (4)-(8), we can derive a geometric relationship between
an edge point in Ek+1 and the corresponding edge line,

fE(XL(k+1,i),T
L
k+1) = dE , i ∈ Ek+1. (9)

Similarly, combining (3) and (4)-(8), we can establish another
geometric relationship between a planar point in Hk+1 and
the corresponding planar patch,

fH(XL(k+1,i),T
L
k+1) = dH, i ∈ Hk+1. (10)

Finally, we solve the lidar motion with the Levenberg-
Marquardt method [26]. Stacking (9) and (10) for each feature
point in Ek+1 and Hk+1, we obtain a nonlinear function,

f(TLk+1) = d, (11)

where each row of f corresponds to a feature point, and d
contains the corresponding distances. We compute the Jaco-
bian matrix of f with respect to TLk+1, denoted as J, where
J = ∂f/∂TLk+1. Then, (11) can be solved through nonlinear
iterations by minimizing d toward zero,

TLk+1 ← TLk+1 − (JT J + λdiag(JTJ))−1JTd. (12)

λ is a factor determined by the Levenberg-Marquardt method.

Algorithm 1: Lidar Odometry
1 input : P̄k , Pk+1, TL

k+1 from the last recursion
2 output : P̄k+1, newly computed TL

k+1
3 begin
4 if at the beginning of a sweep then
5 TL

k+1 ← 0;
6 end
7 Detect edge points and planar points in Pk+1, put the points in

Ek+1 and Hk+1, respectively;
8 for a number of iterations do
9 for each edge point in Ek+1 do

10 Find an edge line as the correspondence, then compute
point to line distance based on (9) and stack the equation
to (11);

11 end
12 for each planar point in Hk+1 do
13 Find a planar patch as the correspondence, then compute

point to plane distance based on (10) and stack the
equation to (11);

14 end
15 Compute a bisquare weight for each row of (11);
16 Update TL

k+1 for a nonlinear iteration based on (12);
17 if the nonlinear optimization converges then
18 Break;
19 end
20 end
21 if at the end of a sweep then
22 Reproject each point in Pk+1 to tk+2 and form P̄k+1;
23 Return TL

k+1 and P̄k+1;
24 end
25 else
26 Return TL

k+1;
27 end
28 end

D. Lidar Odometry Algorithm

The lidar odometry algorithm is shown in Algorithm 1.
The algorithm takes as inputs the point cloud from the last
sweep, P̄k, the growing point cloud of the current sweep,
Pk+1, and the pose transform from the last recursion, TLk+1.
If a new sweep is started, TLk+1 is set to zero (line 4-6). Then,
the algorithm extracts feature points from Pk+1 to construct
Ek+1 and Hk+1 in line 7. For each feature point, we find
its correspondence in P̄k (line 9-19). The motion estimation
is adapted to a robust fitting [27]. In line 15, the algorithm
assigns a bisquare weight for each feature point. The feature
points that have larger distances to their correspondences are
assigned with smaller weights, and the feature points with
distances larger than a threshold are considered as outliers and
assigned with zero weights. Then, in line 16, the pose trans-
form is updated for one iteration. The nonlinear optimization
terminates if convergence is found, or the maximum iteration
number is met. If the algorithm reaches the end of a sweep,
Pk+1 is reprojected to time stamp tk+2 using the estimated
motion during the sweep. Otherwise, only the transform TLk+1

is returned for the next round of recursion.

VI. LIDAR MAPPING

The mapping algorithm runs at a lower frequency then
the odometry algorithm, and is called only once per sweep.
At the end of sweep k + 1, the lidar odometry generates
a undistorted point cloud, P̄k+1, and simultaneously a pose

Scan Plane

Scan Plane

LaserLaser

Fig. 8. Illustration of mapping process. The blue colored curve represents the
lidar pose on the map, TW

k , generated by the mapping algorithm at sweep k.
The orange color curve indicates the lidar motion during sweep k+1, TL

k+1,
computed by the odometry algorithm. With TW

k and TL
k+1, the undistorted

point cloud published by the odometry algorithm is projected onto the map,
denoted as Q̄k+1 (the green colored line segments), and matched with the
existing cloud on the map, Qk (the black colored line segments).

transform, TLk+1, containing the lidar motion during the sweep,
between [tk+1, tk+2]. The mapping algorithm matches and
registers P̄k+1 in the world coordinates, {W}, illustrated in
Fig. 8. To explain the procedure, let us define Qk as the point
cloud on the map, accumulated until sweep k, and let TWk
be the pose of the lidar on the map at the end of sweep k,
tk+1. With the outputs from the lidar odometry, the mapping
algorithm extents TWk for one sweep from tk+1 to tk+2, to
obtain TWk+1, and projects P̄k+1 into the world coordinates,
{W}, denoted as Q̄k+1. Next, the algorithm matches Q̄k+1

with Qk by optimizing the lidar pose TWk+1.
The feature points are extracted in the same way as in

Section V-A, but 10 times of feature points are used. To find
correspondences for the feature points, we store the point
cloud on the map, Qk, in 10m cubic areas. The points in
the cubes that intersect with Q̄k+1 are extracted and stored
in a 3D KD-tree [24]. We find the points in Qk within a
certain region around the feature points. Let S ′ be a set of
surrounding points. For an edge point, we only keep points on
edge lines in S ′, and for a planar point, we only keep points
on planar patches. Then, we compute the covariance matrix
of S ′, denoted as M, and the eigenvalues and eigenvectors of
M, denoted as V and E, respectively. If S ′ is distributed on an
edge line, V contains one eigenvalue significantly larger than
the other two, and the eigenvector in E associated with the
largest eigenvalue represents the orientation of the edge line.
On the other hand, if S ′ is distributed on a planar patch, V
contains two large eigenvalues with the third one significantly
smaller, and the eigenvector in E associated with the smallest
eigenvalue denotes the orientation of the planar patch. The
position of the edge line or the planar patch is determined by
passing through the geometric center of S ′.

To compute the distance from a feature point to its corre-
spondence, we select two points on an edge line, and three
points on a planar patch. This allows the distances to be
computed using the same formulations as (2) and (3). Then,
an equation is derived for each feature point as (9) or (10),
but different in that all points in Q̄k+1 share the same time

Scan Plane

Scan Plane

LaserLaser

Fig. 9. Integration of pose transforms. The blue colored region illustrates the
lidar pose from the mapping algorithm, TW

k , generated once per sweep. The
orange colored region is the lidar motion within the current sweep, TL

k+1,
computed by the odometry algorithm. The motion estimation of the lidar is
the combination of the two transforms, at the same frequency as TL

k+1.

stamp, tk+2. The nonlinear optimization is solved again by a
robust fitting [27] through the Levenberg-Marquardt method
[26], and Q̄k+1 is registered on the map. To evenly distribute
the points, the map cloud is downsized by a voxel grid filter
[28] with the voxel size of 5cm cubes.

Integration of the pose transforms is illustrated in Fig. 9. The
blue colored region represents the pose output from the lidar
mapping, TWk , generated once per sweep. The orange colored
region represents the transform output from the lidar odometry,
TLk+1, at a frequency round 10Hz. The lidar pose with respect
to the map is the combination of the two transforms, at the
same frequency as the lidar odometry.

VII. EXPERIMENTS

During experiments, the algorithms processing the lidar data
run on a laptop computer with 2.5GHz quad cores and 6Gib
memory, on robot operating system (ROS) [29] in Linux. The
method consumes a total of two cores, the odometry and
mapping programs run on two separate cores. Our software
code and datasets are publicly available1,2.

A. Indoor & Outdoor Tests

The method has been tested in indoor and outdoor environ-
ments. During indoor tests, the lidar is placed on a cart together
with a battery and a laptop computer. One person pushes the
cart and walks. Fig. 10(a) and Fig. 10(c) show maps built
in two representative indoor environments, a narrow and long
corridor and a large lobby. Fig. 10(b) and Fig. 10(d) show two
photos taken from the same scenes. In outdoor tests, the lidar
is mounted to the front of a ground vehicle. Fig. 10(e) and
Fig. 10(g) show maps generated from a vegetated road and an
orchard between two rows of trees, and photos are presented
in Fig. 10(f) and Fig. 10(h), respectively. During all tests, the
lidar moves at a speed of 0.5m/s.

To evaluate local accuracy of the maps, we collect a second
set of lidar clouds from the same environments. The lidar is
kept stationary and placed at a few different places in each
environment during data selection. The two point clouds are
matched and compared using the point to plane ICP method
[9]. After matching is complete, the distances between one

1wiki.ros.org/loam_back_and_forth
2wiki.ros.org/loam_continuous

0

5

10
-6

-4

-2

0

2

-1

0

1

-0.1 0 0.1 0.2
0

5

10

15

20

25

Corridor
Lobby
Vegetated road
Orchard

Z
(m

)

Matching error (m)

D
en

si
ty
 o
f
D
is
tr
ib
u
ti
o
n

Fig. 11. Matching errors for corridor (red), lobby (green), vegetated road
(blue) and orchard (black), corresponding to the four scenes in Fig. 10.

wiki.ros.org/loam_back_and_forth
wiki.ros.org/loam_continuous

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Fig. 10. Maps generated in (a)-(b) a narrow and long corridor, (c)-(d) a large lobby, (e)-(f) a vegetated road, and (g)-(h) an orchard between two rows of
trees. The lidar is placed on a cart in indoor tests, and mounted on a ground vehicle in outdoor tests. All tests use a speed of 0.5m/s.

TABLE I
RELATIVE ERRORS FOR MOTION ESTIMATION DRIFT.

Test 1 Test 2
Environment Distance Error Distance Error

Corridor 58m 0.9% 46m 1.1%
Orchard 52m 2.3% 67m 2.8%

point cloud and the corresponding planer patches in the second
point cloud are considered as matching errors. Fig. 11 shows
the density of error distributions. It indicates smaller matching
errors in indoor environments than in outdoor. The result is
reasonable because feature matching in natural environments
is less exact than in manufactured environments.

Additionally, we conduct tests to measure accumulated
drift of the motion estimate. We choose corridor for indoor
experiments that contains a closed loop. This allows us to start
and finish at the same place. The motion estimation generates
a gap between the starting and finishing positions, which
indicates the amount of drift. For outdoor experiments, we
choose orchard environment. The ground vehicle that carries
the lidar is equipped with a high accuracy GPS/INS for ground
truth acquisition. The measured drifts are compared to the
distance traveled as the relative accuracy, and listed in Table I.
Specifically, Test 1 uses the same datasets with Fig. 10(a) and
Fig. 10(g). In general, the indoor tests have a relative accuracy
around 1% and the outdoor tests are around 2.5%.

B. Assistance from an IMU

We attach an Xsens MTi-10 IMU to the lidar to deal with
fast velocity changes. The point cloud is preprocessed in
two ways before sending to the proposed method, 1) with
orientation from the IMU, the point cloud received in one

sweep is rotated to align with the initial orientation of the lidar
in that sweep, 2) with acceleration measurement, the motion
distortion is partially removed as if the lidar moves at a const
velocity during the sweep. The point cloud is then processed
by the lidar odometry and mapping programs.

The IMU orientation is obtained by integrating angular
rates from a gyro and readings from an accelerometer in a
Kalman filter [1]. Fig. 12(a) shows a sample result. A person
holds the lidar and walks on a staircase. When computing the
red curve, we use orientation provided by the IMU, and our
method only estimates translation. The orientation drifts over
25◦ during 5 mins of data collection. The green curve relies
only on the optimization in our method, assuming no IMU is
available. The blue curve uses the IMU data for preprocessing
followed by the proposed method. We observe small difference
between the green and blue curves. Fig. 12(b) presents the map
corresponding to the blue curve. In Fig. 12(c), we compare
two closed views of the maps in the yellow rectangular in
Fig. 12(b). The upper and lower figures correspond to the blue
and green curves, respectively. Careful comparison finds that
the edges in the upper figure are sharper.

Table II compares relative errors in motion estimation with
and without using the IMU. The lidar is held by a person
walking at a speed of 0.5m/s and moving the lidar up and
down at a magnitude around 0.5m. The ground truth is
manually measured by a tape ruler. In all four tests, using
the proposed method with assistance from the IMU gives the
highest accuracy, while using orientation from the IMU only
leads to the lowest accuracy. The results indicate that the IMU
is effective in canceling the nonlinear motion, with which, the
proposed method handles the linear motion.

-2 0 2 4
0

1
2

0

5

10

14

Y
(m

)

IMU
Optimization
IMU+Optimization

IMU
Our Method
Our Method+IMU

(a)

(b)

(c)

Fig. 12. Comparison of results with/without aiding from an IMU. A person
holds the lidar and walks on a staircase. The black dot is the starting point. In
(a), the red curve is computed using orientation from the IMU and translation
estimated by our method, the green curve relies on the optimization in our
method only, and the blue curve uses the IMU data for preprocessing followed
by the method. (b) is the map corresponding to the blue curve. In (c), the
upper and lower figures correspond to the blue and green curves, respectively,
using the region labeled by the yellow rectangular in (b). The edges in the
upper figure are sharper, indicating more accuracy on the map.

TABLE II
MOTION ESTIMATION ERRORS WITH/WITHOUT USING IMU.

Error
Environment Distance IMU Ours Ours+IMU

Corridor 32m 16.7% 2.1% 0.9%
Lobby 27m 11.7% 1.7% 1.3%

Vegetated road 43m 13.7% 4.4% 2.6%
Orchard 51m 11.4% 3.7% 2.1%

C. Tests with KITTI Datasets

We have also evaluated our method using datasets from the
KITTI odometry benchmark [30], [31]. The datasets are care-
fully registered with sensors mounted on top of a passenger
vehicle (Fig. 13(a)) driving on structured roads. The vehicle
is equipped with a 360◦ Velodyne lidar, color/monochrome
stereo cameras, and a high accuracy GPS/INS for ground truth

(a) (b)

Fig. 13. (a) Sensor configuration and vehicle used by the KITTI benchmark.
The vehicle is mounted with a Velodyne lidar, stereo cameras, and a high
accuracy GPS/INS for ground truth acquisition. Our method uses data from
the Velodyne lidar only. (b) A sample lidar cloud (upper figure) and the
corresponding visual image (lower figure) from an urban scene.

purposes. The lidar data is logged at 10Hz and used by our
method for odometry estimation. Due to space issue, we are
not able to include the results. However, we encourage readers
to review our results on the benchmark website3.

The datasets mainly cover three types of environments:
“urban” with buildings around, “country” on small roads with
vegetations in the scene, and “highway” where roads are wide
and the surrounding environment is relatively clean. Fig. 13(b)
shows a sample lidar cloud and the corresponding visual
image from an urban environment. The overall driving distance
included in the datasets is 39.2km. Upon uploading of the
vehicle trajectories, the accuracy and ranking are automatically
calculated by the benchmark server. Our method is ranked #1
among all methods evaluated by the benchmark irrespective
of sensing modality, including state of the art stereo visual
odometry [32], [33]. The average position error is 0.88% of
the distance traveled, generated using trajectory segments at
100m, 200m, ..., 800m lengthes in 3D coordinates.

VIII. CONCLUSION AND FUTURE WORK

Motion estimation and mapping using point cloud from a
rotating laser scanner can be difficult because the problem in-
volves recovery of motion and correction of motion distortion
in the lidar cloud. The proposed method divides and solves
the problem by two algorithms running in parallel: the lidar
odometry conduces coarse processing to estimate velocity at
a higher frequency, while the lidar mapping performs fine
processing to create maps at a lower frequency. Cooperation
of the two algorithms allows accurate motion estimation and
mapping in real-time. Further, the method can take advantage
of the lidar scan pattern and point cloud distribution. Feature
matching is made to ensure fast computation in the odometry
algorithm, and to enforce accuracy in the mapping algorithm.
The method has been tested both indoor and outdoor as well
as on the KITTI odometry benchmark.

Since the current method does not recognize loop closure,
our future work involves developing a method to fix motion
estimation drift by closing the loop. Also, we will integrate
the output of our method with an IMU in a Kalman filter to
further reduce the motion estimation drift.

3www.cvlibs.net/datasets/kitti/eval_odometry.php

www.cvlibs.net/datasets/kitti/eval_odometry.php

REFERENCES

[1] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. Cambridge,
MA, The MIT Press, 2005.

[2] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. Leonard, and F. Dellaert,
“iSAM2: Incremental smoothing and mapping using the bayes tree,” The
International Journal of Robotics Research, vol. 31, pp. 217–236, 2012.

[3] R. Zlot and M. Bosse, “Efficient large-scale 3D mobile mapping and
surface reconstruction of an underground mine,” in The 7th International
Conference on Field and Service Robots, Matsushima, Japan, July 2012.

[4] K. Konolige, M. Agrawal, and J. Sol, “Large-scale visual odometry for
rough terrain,” Robotics Research, vol. 66, p. 201212, 2011.

[5] D. Nister, O. Naroditsky, and J. Bergen, “Visual odometry for ground
vechicle applications,” Journal of Field Robotics, vol. 23, no. 1, pp.
3–20, 2006.

[6] M. Bosse, R. Zlot, and P. Flick, “Zebedee: Design of a spring-mounted
3-D range sensor with application to mobile mapping,” vol. 28, no. 5,
pp. 1104–1119, 2012.

[7] S. Shen and N. Michael, “State estimation for indoor and outdoor
operation with a micro-aerial vehicle,” in International Symposium on
Experimental Robotics (ISER), Quebec City, Canada, June 2012.

[8] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and map-
ping: part i the essential algorithms,” IEEE Robotics & Automation
Magazine, vol. 13, no. 2, pp. 99–110, 2006.

[9] S. Rusinkiewicz and M. Levoy, “Efficient variants of the ICP algorithm,”
in Third International Conference on 3D Digital Imaging and Modeling
(3DIM), Quebec City, Canada, June 2001.

[10] A. Nuchter, K. Lingemann, J. Hertzberg, and H. Surmann, “6D SLAM–
3D mapping outdoor environments,” Journal of Field Robotics, vol. 24,
no. 8-9, pp. 699–722, 2007.

[11] S. Kohlbrecher, O. von Stryk, J. Meyer, and U. Klingauf, “A flexible
and scalable SLAM system with full 3D motion estimation,” in IEEE
International Symposium on Safety, Security, and Rescue Robotics,
Kyoto, Japan, September 2011.

[12] F. Pomerleau, F. Colas, R. Siegwart, and S. Magnenat, “Comparing ICP
variants on real-world data sets,” Autonomous Robots, vol. 34, no. 3, pp.
133–148, 2013.

[13] S. Hong, H. Ko, and J. Kim, “VICP: Velocity updating iterative closest
point algorithm,” in IEEE International Conference on Robotics and
Automation (ICRA), Anchorage, Alaska, May 2010.

[14] F. Moosmann and C. Stiller, “Velodyne SLAM,” in IEEE Intelligent
Vehicles Symposium (IV), Baden-Baden, Germany, June 2011.

[15] S. Scherer, J. Rehder, S. Achar, H. Cover, A. Chambers, S. Nuske, and
S. Singh, “River mapping from a flying robot: state estimation, river
detection, and obstacle mapping,” Autonomous Robots, vol. 32, no. 5,
pp. 1 – 26, May 2012.

[16] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “FastSLAM: A
factored solution to the simultaneous localization and mapping problem,”
in The AAAI Conference on Artificial Intelligence, Edmonton, Canada,
July 2002.

[17] H. Bay, A. Ess, T. Tuytelaars, and L. Gool, “SURF: Speeded up robust
features,” Computer Vision and Image Understanding, vol. 110, no. 3,
pp. 346–359, 2008.

[18] H. Dong and T. Barfoot, “Lighting-invariant visual odometry using
lidar intensity imagery and pose interpolation,” in The 7th International
Conference on Field and Service Robots, Matsushima, Japan, July 2012.

[19] S. Anderson and T. Barfoot, “RANSAC for motion-distorted 3D visual
sensors,” in 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Tokyo, Japan, Nov. 2013.

[20] C. H. Tong and T. Barfoot, “Gaussian process gauss-newton for 3D laser-
based visual odometry,” in IEEE International Conference on Robotics
and Automation (ICRA), Karlsruhe, Germany, May 2013.

[21] S. Anderson and T. Barfoot, “Towards relative continuous-time SLAM,”
in IEEE International Conference on Robotics and Automation (ICRA),
Karlsruhe, Germany, May 2013.

[22] M. Bosse and R. Zlot, “Continuous 3D scan-matching with a spinning
2D laser,” in IEEE International Conference on Robotics and Automa-
tion, Kobe, Japan, May 2009.

[23] Y. Li and E. Olson, “Structure tensors for general purpose LIDAR
feature extraction,” in IEEE International Conference on Robotics and
Automation, Shanghai, China, May 9-13 2011.

[24] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf, Com-
putation Geometry: Algorithms and Applications, 3rd Edition. Springer,
2008.

[25] R. Murray and S. Sastry, A mathematical introduction to robotic manip-
ulation. CRC Press, 1994.

[26] R. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision. New York, Cambridge University Press, 2004.

[27] R. Andersen, “Modern methods for robust regression.” Sage University
Paper Series on Quantitative Applications in the Social Sciences, 2008.

[28] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),”
in IEEE International Conference on Robotics and Automation (ICRA),
Shanghai, China, May 9-13 2011.

[29] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger,
R. Wheeler, and A. Ng, “ROS: An open-source robot operating system,”
in Workshop on Open Source Software (Collocated with ICRA 2009),
Kobe, Japan, May 2009.

[30] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? The kitti vision benchmark suite,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2012, pp. 3354–
3361.

[31] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The KITTI dataset,” International Journal of Robotics Research, no. 32,
pp. 1229–1235, 2013.

[32] H. Badino and T. Kanade, “A head-wearable short-baseline stereo system
for the simultaneous estimation of structure and motion,” in IAPR
Conference on Machine Vision Application, Nara, Japan, 2011.

[33] A. Y. H. Badino and T. Kanade, “Visual odometry by multi-frame feature
integration,” in Workshop on Computer Vision for Autonomous Driving
(Collocated with ICCV 2013), Sydney, Australia, 2013.

	Introduction
	Related Work
	Notations and Task Description
	System Overview
	Lidar Hardware
	Software System Overview

	Lidar Odometry
	Feature Point Extraction
	Finding Feature Point Correspondence
	Motion Estimation
	Lidar Odometry Algorithm

	Lidar Mapping
	Experiments
	Indoor & Outdoor Tests
	Assistance from an IMU
	Tests with KITTI Datasets

	Conclusion and Future Work
	References

