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Abstract—Detection of objects in cluttered indoor environ-
ments is one of the key enabling functionalities for service robots.
The best performing object detection approaches in computer
vision exploit deep Convolutional Neural Networks (CNN) to
simultaneously detect and categorize the objects of interest in
cluttered scenes. Training of such models typically requires large
amounts of annotated training data which is time consuming
and costly to obtain. In this work we explore the ability of using
synthetically generated composite images for training state-of-
the-art object detectors, especially for object instance detection.
We superimpose 2D images of textured object models into images
of real environments at variety of locations and scales. Our
experiments evaluate different superimposition strategies ranging
from purely image-based blending all the way to depth and
semantics informed positioning of the object models into real
scenes. We demonstrate the effectiveness of these object detector
training strategies on two publicly available datasets, the GMU-
Kitchens [5] and the Washington RGB-D Scenes v2 [11]. As one
observation, augmenting some hand-labeled training data with
synthetic examples carefully composed onto scenes yields object
detectors with comparable performance to using much more
hand-labeled data. Broadly, this work charts new opportunities
for training detectors for new objects by exploiting existing object
model repositories in either a purely automatic fashion or with
only a very small number of human-annotated examples.

I. INTRODUCTION

The capability of detecting and searching for common
household objects in indoor environments is the key com-
ponent of the ‘fetch-and-delivery’ task commonly considered
one of the main functionalities of service robots. Existing
approaches for object detection are dominated by machine
learning techniques focusing on learning suitable representa-
tions of object instances. This is especially the case when the
objects of interest are to be localized in environments with
large amounts of clutter, variations in lighting, and a range
of poses. While the problem of detecting object instances in
simpler table top settings has been tackled previously using
local features, these methods are often not effective in the
presence of large amounts of clutter or when the scale of the
objects is small.

Current leading object detectors exploit convolutional neu-
ral networks (CNNs) and are either trained end-to-end [12]
for sliding-window detection or follow the region proposal
approach which is jointly fine-tuned for accurate detection
and classification [6] [16]. In both approaches, the training
and evaluation of object detectors requires labeling of a large

Fig. 1. Given cropped object images and background scenes we propose an
automated approach for generating synthetic training sets that can be used to
train current state-of-the-art object detectors, which can then be applied to real
test images. The generation procedure takes advantage of scene understanding
methods in order to place the objects in meaningful positions in the images.
We also explore using a combination of synthetic and real images for training
and demonstrate higher detection accuracy compared to training with only
real data. Best viewed in color.

number of training images with objects in various backgrounds
and poses with the bounding boxes or even segmentations of
objects from background.

Often in robotics, object detection is a prerequisite for
tasks such as pose estimation, grasping, and manipulation.
Notable efforts have been made to collect 3D models for object
instances with and without textures, assuming that objects of
interest are in proximity, typically on a table top. Existing
approaches to these challenges often use either 3D CAD
models [13] or texture mapped models of object instances
obtained using traditional reconstruction pipelines [21, 24].

In this work we explore the feasibility of using such existing
datasets of standalone objects on uniform backgrounds for
training object detectors [12, 16] that can be applied in
real-world cluttered scenes. We create “synthetic” training
images by superimposing the objects into images of real
scenes. We investigate effects of different superimposition
strategies ranging from purely image-based blending all the
way to using depth and semantics to inform positioning of
the objects. Toward this end we exploit the geometry and the
semantic segmentation of a scene obtained using the state of
the art method of [14] to restrict the locations and size of
the superimposed object model. We demonstrate that, in the



context of robotics applications in indoor environments, these
positioning strategies improve the final performance of the
detector. This is in contrast with previous approaches [15, 23]
which used large synthetic datasets with mostly randomized
placement. In summary, our contributions are the following:

1) We propose an automated approach to generate synthetic
training data for the task of object detection, which
takes into consideration the geometry and semantic
information of the scene.

2) Based on our results and observations, we offer insights
regarding the superimposition design choices, that could
potentially affect the way training sets for object detec-
tion are generated in the future.

3) We provide an extensive evaluation of current state-of-
the-art object detectors and demonstrate their behavior
under different training regimes.

II. RELATED WORK

We first briefly review related works in object detection
to motivate our choice of detectors, then discuss previous
attempts to use synthetic data as well as different datasets
and evaluation methodologies.

a) Object Detection: Traditional methods for object de-
tection in cluttered scenes follow the sliding window based
pipeline with hand designed flat feature representations (e.g.
HOG) along with discriminative classifiers, such as linear
or latent SVMs. Examples include DPMs [4] which exploit
efficient methods for feature computation and classifier eval-
uation. These models have been used successfully in robotics
for detection in the table top setting [10]. Other effectively
used strategies for object detection used local features and
correspondences between a model reference image and the
scene. These approaches [3, 26] worked well with textured
household objects, taking advantage of the discriminative
nature of the local descriptors. In an attempt to reduce the
search space of the sliding window techniques, alternative
approaches concentrated on generating category-independent
object proposals [28, 2] using bottom up segmenation tech-
niques followed by classification using traditional features.
The flat engineered features have been recently superseded by
approaches based on Convolutional Neural Networks (CNN’s),
which learn features with increased amount of invariance by
repeated layering of convolutional and pooling layers. While
these methods have been intially introduced for image classifi-
cation task [9], extensions to object detection include [7] [18].
The R-CNN approach [7] relied on finding object proposals
and extracting features from each crop using a pre-trained
network, making the proposal generating module independent
from the classification module. Recent state of the art object
detectors such as Faster R-CNN [16] and SSD [12] are trained
jointly in a so called end-to-end fashion to both find object
proposals and also classify them.

b) Synthetic Data: There are several previous attempts
to use synthetic data for training CNNs. The work of [15]
used existing 3D CAD models, both with and without tex-
ture, to generate 2D images by varying the projections and

orientations of the objects. The approach was evaluated on
20 categories in PASCAL VOC2007 dataset. That work used
earlier CNN models [7] where the proposal generation module
was independent from fine-tuning the CNN classifier, hence
making the dependence on the context and background less
prominent than in current models. In the work of [23] the
authors used the rendered models and their 2D projections on
varying backgrounds to train a deep CNN for pose estimation.
In these representative works, objects typically appeared on
simpler backgrounds and were combined with the object
detection strategies that rely on the proposal generation stage.
Our work differs in that we perform informed compositing
on the background scenes, instead of placing object-centric
synthetic images at random locations. This allows us to train
the CNN object detectors to produce higher quality object
proposals, rather than relying on unsupervised bottom-up
techniques. In [17], a Grand Theft Auto video game engine
was used to collect scenes with realistic appearance and
their associated category pixel level labels for the problem
of semantic segmentation. Authors showed that using these
high realism renderings can significantly reduce the effort for
annotation. They used a combination of synthetic data and real
images to train models for semantic segmentation. Perhaps the
closest work to ours is [8], which also generates a synthetic
training set by taking advantage of scene segmentation to
create synthetic training examples, however the task is that
of text localization instead of object detection.

III. APPROACH

A. Synthetic Set Generation

CNN-based object detectors require large amounts of anno-
tated data for training, due to the large number of parameters
that need to be learned. For object instance detection the
training data should also cover the variations in the object’s
viewpoint and other nuisance parameters such as lighting,
occlusion and clutter. Manually collecting and annotating
scenes with the aforementioned properties is time-consuming
and costly. Another factor in annotation is the sometimes low
generalization capability of trained models across different
environments and backgrounds. The work of [22] addressed
this problem by building a map of an environment including
objects of interest and using Amazon Mechanical Turk for
annotation and subsequent training of object detectors in
each particular environment. The authors demonstrated this
approach on commonly encountered categories (≈ 20) of
household objects. This approach uses human labeling effort
for each new each scene and object combination, potentially
limiting scalability.

Our approach focuses on object instances and their super-
imposition into real scenes at different positions, scales, while
reducing the difference in lighting conditions and exploiting
proper context. To this end, we use cropped images from
existing object recognition datasets such as BigBird [21] rather
than using 3D CAD models [15, 23]. This allows us to have
real colors and textures for our training instances as opposed
to rendering them with randomly chosen or artificial samples.



Fig. 2. Overview of the procedure for blending an object in a background scene. We take advantage of estimated support surfaces (g) and predictions for
counters and tables (c) in order to find regions for object placement (d). The semantic segmentation of the scene [14], and the plane extraction are shown
in (b) and (f) respectively. (h) presents an example of an object’s RGB, depth, and mask images, while (i) shows the final blending result. RGB and depth
images of the background scene are in (a) and (e) respectively. Best viewed in color.

The BigBird dataset captures 120 azimuth angles from 5
different elevations for a total of 600 views per object. It
contains a total of 125 object instances with a variety of
textures and shapes. In our experiments we use the 11 object
instances that can be found in the GMU-Kitchens dataset.

The process of generating a composite image with superim-
posed objects can be summarized in the following steps. First,
we choose a background scene and estimate the positions of
any support surfaces. This is further augmented by semantic
segmentation of the scene, used to verify the support surfaces
found by plane fitting. The objects of interest are placed
on support surfaces, ensuring their location in areas with
appropriate context and backgrounds. The next step is to
randomly choose an object and its pose, followed by choosing
a position in the image. The object scale is then determined by
the depth value of the chosen position and finally the object is
blended into the scene. An example of this process is shown
in Figure 2. We next describe these steps in more detail.

Selective Positioning: In natural images, small hand-
held objects are usually found on supporting surfaces such as
counters, tables, and desks. These planar surfaces are extracted
using the method described in [27], which applies RANSAC
to fit planes to regions after an initial over-segmentation of
the image. Given the extracted planar surfaces’s orientations,
we select the planes with large extent, which are aligned
with the gravity direction as candidate support surfaces. To
ensure that the candidate support surfaces belong to a desired
semantic category, a support surface is considered valid if it
overlaps in the image with semantic categories of counters,
tables and desks obtained by semantic segmentation of the
RGB-D image.

Semantic Segmentation: To determine the semantic cat-
egories in the scene, we use the semantic segmentation CNN
of [14], which is pre-trained on MS-COCO and PASCAL-
VOC datasets, and fine-tuned on NYU Depth v2 dataset for 40
semantic categories. The model is jointly trained for semantic

segmentation and depth estimation, which allows the scene
geometry to be exploited for better discrimination between
some of the categories. We do not rely solely on the semantic
segmentation for object positioning, since it rarely covers the
entire support surface, as can be seen in Figure 2(c). The
combination of the support surface detection and semantic
segmentation produces more accurate regions for placing the
objects. The aforementioned regions that belong to valid sup-
port surfaces are then randomly chosen for object positioning.
Finally, occlusion levels are regulated by allowing a maximum
of 40% overlap between positioned object instances in the
image.

Selective Scaling and Blending: The size of the object
is determined by using the depth of the selected position and
scaling the width w and height h accordingly:

ŵ =
wz̄

z
ĥ =

hz̄

z

where z̄ is the median depth of the object’s training images, z
is the depth at the selected position in the background image,
and ŵ, ĥ are the scaled width and height respectively.

The last step in our process is to blend the object with the
background image in order to mitigate the effects of changes
in illumination and contrast. We use the implementation from
Fast Seamless Cloning [25] with a minor modification. Instead
of blending a rectangular patch of the object, we provide a
masked object to the fast seamless cloning algorithm which
produces a cleaner result. Figure 3 illustrates examples of
scenes with multiple blended objects.

B. Object Detectors

For our experiments we employ two state-of-the-art object
detectors, Faster R-CNN [16] and Single-Shot Multibox De-
tector (SSD) [12]. Both Faster R-CNN and SSD are trained
end-to-end but their architectures are different. Faster R-CNN
consists of two modules. The first module is the Region



Fig. 3. Examples of blending object instances from the BigBird dataset into scenes from the NYU Depth V2 dataset. The blended objects are marked with
a red bounding box. Best viewed in color.

Proposal Network (RPN) which is a fully convolutional net-
work that outputs object proposals and also an objectness
score for each proposal reflecting the probability of having an
object inside the region. The second detection network module
resizes the feature maps, corresponding to each object proposal
to a fixed size, classifies it to an object category and refines
the location and the height and width of the bounding box
associated with each proposal. The advantage of Faster R-
CNN is the modularity of the model; one module that finds
object proposals and the second module which classifies each
of the proposals. The downside of Faster R-CNN is that it uses
the same feature map to find objects of different sizes which
causes problems for small objects. SSD tackles this problem
by creating feature maps of different resolutions. Each cell
of the coarser feature maps captures larger area of the image
for detecting large objects whereas the finer feature maps are
detecting smaller objects. These multiple feature maps allow
higher accuracy for a given input resolution, providing SSD’s
speed advantage for similar accuracy. Both detectors have
difficulties for objects with small size in pixels, making input
resolution an important factor.

IV. EXPERIMENTS

In order to evaluate the object detectors trained on com-
posited images, we have conducted three sets of experiments
on two publicly available datasets, the GMU-Kitchen Scenes
[5] and the Washington RGB-D Scenes v2 dataset [11]. In the
first experiment, training images are generated by choosing
different compositing strategies to determine the effect of po-
sitioning, scaling, and blending on the performance. The object
detectors are trained on composited images and evaluated on

Fig. 4. Comparison between masks from BigBird (top row), and masks after
refinement with Graph-cut (bottom row).

real scenes. In the second set of experiments we examine the
effect of varying proportion of synthetic/composited images
and real training images. Finally we use synthetic data for
both training and testing in order to show the reduction of
over-fitting to superimposition artifacts during training when
the proposed approach of data generation is employed.

A. Datasets and Backgrounds

For our experiments, we utilized the following datasets:
a) GMU Kitchen Scenes dataset [5]: The GMU-

Kitchens dataset includes 9 RGB-D videos of kitchen scenes
with 11 object instances from the BigBird dataset. We also
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Real to Real
1. 3-Fold 46.7 / 78.9 73.7 / 92.0 81.8 / 91.9 64.5 / 81.8 62.9 / 74.7 83.9 / 93.4 70.3 / 85.9 69.8 / 76.6 76.1 / 90.7 64.8 / 86.4 27.7 / 54.6 65.6 / 82.5

Synthetic to Real
2. RP-SI-RS 9.1 / 37.2 15.9 / 68.3 49.4 / 72.5 9.8 / 26.1 13.5 / 32.3 61.6 / 70.2 42.2 / 57.2 15.5 / 29.0 36.9 / 46.9 1.0 / 2.9 0.8 / 20.4 23.2 / 42.1
3. RP-BL-RS 9.1 / 62.4 15.7 / 69.3 41.4 / 58.2 10.7 / 32.4 9.9 / 4.3 41.2 / 51.7 39.0 / 47.1 28.7 / 39.3 36.2 / 32.2 11.5 / 59.2 0.7 / 30.0 22.2 / 44.2
4. SP-SI-SS 10.5 / 45.2 17.5 / 71.7 47.2 / 66.6 0.1 / 26.0 9.1 / 45.5 44.9 / 80.5 36.5 / 78.4 24.0 / 37.8 9.1 / 46.1 5.5 / 27.1 10.3 / 9.7 19.5 / 48.6
5. SP-BL-SS 18.3 / 55.5 22.1 / 67.9 58.9 / 71.2 9.5 / 34.6 11.1 / 30.6 75.7 / 82.9 65.5 / 66.2 23.8 / 33.1 59.4 / 54.3 14.6 / 54.8 9.1 / 17.7 33.5 / 51.7

Synthetic+Real to Real
6. 1% real 39.4 / 65.1 71.8 / 85.8 80.4 / 85.7 50.2 / 62.3 45.2 / 51.6 82.6 / 90.4 74.9 / 85.6 57.8 / 54.3 78.1 / 79.4 54.2 / 70.6 28.5 / 32.2 60.3 / 69.3
7. 10% real 59.4 / 70.5 83.8 / 91.5 83.7 / 89.6 66.2 / 82.2 60.7 / 62.8 87.3 / 94.6 79.8 / 87.4 72.6 / 66.3 83.4 / 89.5 77.6 / 87.4 33.0 / 49.5 71.6 / 79.2
8. 50% real 64.6 / 79.3 84.2 / 92.5 87.6 / 91.1 70.4 / 77.3 67.1 / 86.2 89.2 / 95.4 79.7 / 87.9 75.4 / 77.8 80.1 / 91.6 79.3 / 90.1 37.6 / 52.2 74.1 / 83.8
9. 100% real 59.0 / 82.6 84.5 / 92.9 85.1 / 91.4 74.2 / 85.5 67.5 / 81.9 87.4 / 95.5 78.9 / 88.6 71.3 / 78.5 85.2 / 93.6 79.9 / 90.2 37.6 / 54.1 73.7 / 85.0

Synthetic to Synthetic
10. RP-SI-RS 90.8 / 99.6 90.9 / 100 90.8 / 99.7 90.8 / 99.6 90.9 / 99.6 90.9 / 99.8 90.8 / 99.7 90.7 / 98.9 90.9 / 99.7 90.8 / 99.4 90.6 / 98.7 90.8 / 99.5
11. SP-BL-SS 84.3 / 79.2 86.7 / 84.4 88.1 / 94.8 81.7 / 79.3 88.9 / 94.6 83.5 / 92.6 80.8 / 89.5 83.1 / 79.9 84.5 / 93.1 86.4 / 89.1 74.0 / 65.8 83.8 / 85.7

TABLE I
AVERAGE PRECISION RESULTS (SSD / FASTER R-CNN) FOR ALL EXPERIMENTS ON THE GMU-KITCHENS DATASET. THE SYNTHETIC+REAL TO REAL

EXPERIMENTS WERE PERFORMED USING THE SP-BL-SS SET PLUS THE PERCENTAGE OF REAL DATA SHOWN IN THE TABLE.
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Real to Real
1.Scenes 1-7 90.8 / 99.7 90.2 / 95.5 90.9 / 99.6 89.9 / 96.7 89.3 / 96.7 90.2 / 97.9

Synthetic to Real
2. RP-SI-RS 77.2 / 65.2 78.5 / 39.4 90.9 / 69.2 74.1 / 57.0 70.1 / 29.4 78.2 / 52.0
3. RP-BL-RS 71.5 / 82.6 62.9 / 47.3 90.3 / 93.0 73.1 / 74.9 65.2 / 52.7 72.6 / 70.1
4. SP-SI-SS 77.8 / 86.6 79.8 / 62.4 90.8 / 93.6 73.4 / 68.6 75.5 / 55.5 79.5 / 73.4
5. SP-BL-SS 71.9 / 82.3 75.9 / 70.9 90.7 / 96.8 74.3 / 74.2 75.0 / 66.3 77.5 / 78.1

Synthetic+Real to Real
6. 1% real 87.7 / 98.3 88.3 / 92.7 90.8 / 98.6 88.1 / 96.6 89.5 / 94.9 88.9 / 96.2
7. 10% real 90.8 / 99.6 89.5 / 96.0 90.8 / 99.6 90.4 / 96.9 90.8 / 97.1 90.5 / 97.8
8. 50% real 90.9 / 99.5 90.6 / 96.5 90.9 / 99.9 90.3 / 97.3 90.6 / 97.8 90.7 / 98.2
9. 100% real 90.9 / 99.4 90.5 / 97.0 90.9 / 99.3 90.8 / 97.2 90.8 / 98.1 90.8 / 98.2

Synthetic to Synthetic
10. RP-SI-RS 90.5 / 98.5 90.9 / 99.5 90.9 / 99.5 90.2 / 96.9 90.0 / 92.6 90.5 / 97.4
11. SP-BL-SS 90.7 / 97.4 90.7 / 97.5 90.4 / 97.3 89.5 / 95.1 89.2 / 93.5 90.1 / 96.2

TABLE II
AVERAGE PRECISION RESULTS (SSD / FASTER R-CNN) FOR ALL EXPERIMENTS ON THE WRGB-D DATASET. THE SYNTHETIC+REAL TO REAL

EXPERIMENTS WERE PERFORMED USING THE SP-BL-SS SET PLUS THE PERCENTAGE OF REAL DATA SHOWN IN THE TABLE.

used all 71 raw kitchen videos from the NYU Depth Dataset
V2 [19] with a total of around 7000 frames as background
images. For each image we generate four synthetic images
with different variations in objects that are added to the scene,
pose, scale, and the location that the objects are put. The
object identities and their poses are randomly sampled from
the BigBird dataset, from 360 examples per object with 3
elevations and 120 azimuths.

The images where the support surfaces were not detected are
removed from the training set, making our effective set around
5000 background images. Cropped object images from Big-
Bird dataset of the 11 instances contained in GMU-Kitchens
were used for superimpositioning. We refine the provided ob-
ject masks with GraphCut [1], in order to get cleaner outlines
for the objects. This helps with the jagged and incomplete

boundaries of certain objects (e.g. coke bottle), which are due
to imperfect masks obtained from the depth channel of RGB-
D data caused by reflective materials. Figure 4 illustrates a
comparison between masks from BigBird and masks refined
with GraphCut algorithm. For comparison with the rest of the
experiments we also provide the performance of the object
detectors (row 1 of Table I) trained and tested on the real
data. The train-test split follows the division of the dataset
into three different folds. In each fold six scenes are used for
training and three are used for testing, as shown in [5].

b) Washington RGB-D Scenes v2 dataset (WRGB-
D) [11]: The WRGB-D dataset includes 14 RGB-D videos of
indoor table-top scenes containing instances of objects from
five object categories: bowl, cap, cereal box, coffee mug,
and soda can. The synthetic training data is generated using



Fig. 5. Detection examples for the SSD and Faster R-CNN object detectors on the GMU-Kitchens dataset. Rows 1 and 3 show results when only the real
training data were used, while rows 2 and 4 present results after the detectors were trained with the synthetic set SP-BL-SS and 50% of the real training
data. The green bounding boxes depict correct detections, while the red represent false classifications and missed detections. Training with a combination of
synthetic and real data proves beneficial for the detection task, as the detectors are more robust to small objects and viewpoint variation. Best viewed in color.

the provided background scenes (around 3000 images) and
cropped object images for the present object categories in
the WRGB-D v1 dataset [10]. For each background image
we generate five synthetic images to get a total of around
4600 images. As mentioned earlier, images without a support
surface are discarded. The images that belong to seven of these
scenes are used for training and the rest is used for testing.
Line 1 in Table II shows the performance of the two object
detectors with this split of the real training data.

B. Synthetic to Real
In this experiment we use the synthetic training sets gener-

ated with different combinations of generation parameters for
training, and test on real data. The generation parameters that
we vary are: Random Positioning (RP) / Selective Positioning
(SP), Simple Superimposition (SI) / Blending (BL), and
Random Scale (RS) / Selective Scale (SS), where SP, SS,
and BL are explained in Section III-A. For RP we randomly
sample the position for the object in the entire image, for RS
the scale of the object is randomly sampled from the range of
0.2 to 1 with a step of 0.1, and for SI we do not use blending

but instead we superimpose the masked object directly on the
background.

The objective of this experiment is to investigate the effect
of the generation parameters on the detection accuracy. For
example, if a detector is trained on a set generated with
selective positioning, with blending, and selective scale, how
does it compare to another detector which is trained on a com-
pletely randomly generated set with blending? If the former
demonstrates higher performance than the latter, then we can
assume that selective positioning and scaling are important
and superior to random positioning. For each trained detector,
a combination of the generation parameters (e.g. SP-BL-SS)
is chosen, and then the synthetic set is generated using our
proposed approach along with its bounding box annotations
for each object instance. The detector is trained only on the
synthetic data and then tested on the real data.

The results are shown on lines 2-5 in Table I for the GMU-
Kitchens dataset and in Table II for the WRGB-D dataset. Note
that for the GMU-Kitchens dataset, all frames from 9 scenes
videos were used for testing. We report detection accuracy



IoU GMU-Kitchens WRGB-D
0.5 76.6 98.0
0.7 28.6 60.8

TABLE III
RECALL (%) RESULTS FOR THE RPN ON THE GMU-KITCHENS AND

WRGB-D DATASETS ON TWO DIFFERENT INTERSECTION OVER UNION
(IOU) THRESHOLDS. IN ALL CASES, RPN GENERATED 3000 PROPOSALS

PER IMAGE.

on four combinations of generation parameters, RP-SI-RS,
RP-BL-RS, SP-SI-SS, and SP-BL-SS. Other combinations
such as SP-BL-RS and RP-BL-SS have also been tried,
however we noticed that applying selective positioning without
selective scaling and vice-versa, does not yield any significant
improvements.

For both datasets, we first notice that using only synthetic
data for training considerably lowers the detection accuracy
compared to using real training data. Nevertheless, when train-
ing with synthetic data, the SP-BL-SS generation approach
produced an improvement of 10.3% and 9.6% for SSD and
Faster R-CNN respectively over the randomized generation
approach, RP-SI-RS, on the GMU-Kitchens dataset. This
suggests that selective positioning and scaling are important
factors when generating the training set.

In the case of the WRGB-D dataset, different blending
strategies work better for SSD and Faster R-CNN, SP-SI-SS
and SP-BL-SS respectively. The right choice of blending strat-
egy seems to improve Faster R-CNN somewhat more, while
the overall performance of the two detectors is comparable.
The positioning strategy, SP vs RP, affects the two detectors
differently on this dataset. SSD achieves higher performance
with the random positioning RP-SI-RS, while Faster R-CNN
shows a large improvement of 26.1% when it is trained with
SP-BL-SS. This can be explained by the fact that Faster R-
CNN is trained on proposals from the Region Proposal Net-
work (RPN), which under-performs when objects are placed
randomly in the image (as in RP-SI-RS). On the other hand,
SSD does not have any prior knowledge about the location
of the objects so it learns to regress the bounding boxes from
scratch. The bounding boxes in the beginning of the training
are generated randomly until the SSD learns to localize the
objects. This trend is not observed for the GMU-Kitchens
dataset since it has more clutter in the scenes and higher
variability of backgrounds, which makes the localization of
the objects harder. To justify this argument, we performed a
side-experiment where we run the pre-trained RPN on both
WRGB-D and GMU-Kitchens dataset and evaluated in terms
or recall. Results can be seen in Table III, where RPN performs
much better on the WRGB-D dataset than on GMU-Kitchens.

C. Synthetic+Real to Real

We are interested to see how effective our synthetic training
set is when combined with real training data. Towards this
end the two detectors are trained using the synthetic set
with selective positions and blending SP-BL-SS with certain

percentage of the real training data: 1%, 10%, 50%, and 100%.
For the real training data, besides the case of 100%, the images
are chosen randomly.

Results are shown in lines 6-9 in Table I for the GMU-
Kitchens dataset and in Table II for the WRGB-D dataset.
What is surprising in these results is that when synthetic
training data is combined with only 10% of the real training
data, we achieve higher or comparable detection accuracy than
when the training set is only comprised with real data (see line
1 in both tables). In the case of SSD in the GMU-Kitchens
dataset, we observe an increase of 6%. Only exception is Faster
R-CNN on the GMU-Kitchens dataset which achieves a 2.3%
lower performance, however, when we use 50% of the real
training data we get a better performance of 1.3%. In all cases,
when the synthetic set is combined with 50% and 100% of the
real data, it outperforms the training with the real training set.

The results suggest that our synthetic training data can
effectively augment existing datasets even when the actual
number of real training examples is small. This is particularly
useful when only a small subset of the data is annotated.
Specifically, in our settings, the 10% of real training data
refers to around 400 images in the GMU-Kitchens dataset,
and around 600 in the WRGB-D dataset. Figure 5 presents
examples for which the detectors were unable to detect objects
when they were trained with only real data, but succeeded
when the training set was augmented with our synthetic data.

We further support our argument by comparing the perfor-
mance of the detectors trained only on varying percentages of
the real data to being trained by real+synthetic in Table IV.
The synthetic set here is also generated using SP-BL-SS. Note
that for most of the cases the accuracy increases when the
detectors are trained with both real and synthetic data, and the
largest gain is observed for SSD.

Finally, we present results for the GMU-Kitchens dataset
when the percentage of synthetic data (SP-BL-SS) is varied,
while the real training data remains constant, in Table V.
Again, SSD shows a large and continuing improvement as the
amount of the synthetic data increases, while Faster R-CNN
achieves top performance when half of the synthetic data are
used for training.

D. Synthetic to Synthetic

In this experiment, the object detectors are trained and tested
on synthetic sets. The objective is to show the reduction of
over-fitting on the training data when using our approach
to generate the synthetic images, instead of creating them
randomly. We used the synthetic sets of RP-SI-RS and SP-
BL-SS and split them in half in order to create the train-test
sets.

The results are presented on lines 10 and 11 in Table I for
the GMU-Kitchens dataset and in Table II for the WRGB-
D dataset. For GMU-Kitchens, we observe that RP-SI-RS
achieves results of over 90%, and in the case of Faster R-CNN
almost 100%, while at the same time it is the least performing
synthetic set in the synthetic to real experiment (see line 2
in table I) described in Section IV-B. This is because the



GMU-Kitchens
Percentage of Real Only Real Real+Synthetic

1% 57.4 / 70.8 60.3 / 69.3
10% 61.5 / 81.1 71.6 / 79.2
50% 66.4 / 82.4 74.1 / 83.8

100% 65.6 / 82.5 73.7 / 85.0
WRGB-D

Percentage of Real Only Real Real+Synthetic
1% 89.1 / 95.6 88.9 / 96.2
10% 89.4 / 97.5 90.5 / 97.8
50% 90.2 / 97.6 90.7 / 98.2

100% 90.2 / 97.9 90.8 / 98.2

TABLE IV
COMPARISON IN PERFORMANCE OF SSD / FASTER R-CNN BETWEEN

TRAINING WITH ONLY REAL TO TRAINING WITH REAL+SYNTHETIC, WITH
VARYING AMOUNTS OF REAL DATA. THE AMOUNT OF SYNTHETIC DATA IS

CONSTANT.

Training Set Accuracy
Real 65.6 / 82.5

Real+Synth(10%) 69.0 / 84.5
Real+Synth(50%) 72.7 / 85.7
Real+Synth(100%) 73.7 / 85.0

TABLE V
COMPARISON IN PERFORMANCE OF SSD / FASTER R-CNN ON THE

GMU-KITCHENS DATASET FOR INCREASING AMOUNTS OF THE
SYNTHETIC DATA, WHILE ALL REAL DATA ARE USED.

detectors over-fit on the synthetic data and cannot generalize
to an unseen set of real test data. While the detectors still seem
to over-fit on SP-BL-SS, the gap between the accuracy on the
synthetic testing and real testing data is much smaller, at the
order of 17.3% for SSD, and 23.4% for Faster R-CNN (see
line 5 in table I).

On the other hand, for the WRGB-D dataset both synthetic
training sets achieve similar results on their synthetic test sets.
This is not surprising as the complexity of the scenes is much
lower in WRGB-D than in the GMU-Kitchens dataset. Please
see section IV-B for more details.

E. Additional Discussion

We have seen in the results of section IV-B, that when a
detector is trained on synthetic data and then applied on real
data, the performance is consistently lower that training on
real data. While this can be attributed to artifacts introduced
during the blending process, one other factor is the large
difference of backgrounds between the NYU V2 dataset and
the GMU-Kitchens. We investigated this through a simple
object recognition experiment. We trained the VGG [20]
network on the BigBird dataset on the cropped images with
elevation angles from cameras 1, 3, and 5, tested on the images
with elevation angles from cameras 2 and 4, and achieved
recognition accuracy of 98.2%. For comparison, when the
VGG is trained on all images from BigBird, and tested on
cropped images from the GMU-Kitchens, which contain real
background scenes, the accuracy drops down to 79.0%.

V. CONCLUSION

One of the advantages of our method is that it is scalable
both with the number of objects of interest and with the set of
the possible backgrounds, which makes our method suitable
for robotics application. For example, the object detectors can
be trained with significantly less annotated data using our
proposed training data augmentation. We also showed that
our method is more effective when the object placements are
based on semantic and geometric context of the scene. This is
due to the fact that CNNs implicitly consider the surrounding
context of the objects and when superimposition is informed
by semantic and geometric factors, the gain in accuracy is
larger. Another related observation is that for SSD, accuracy
increases more than for Faster R-CNN when training data is
augmented by synthetic composite images.

While we showed it is possible to train an object detector
with fewer annotated images using synthetically generated
images, alternative domain adaptation approaches can be also
explored towards the goal of reducing the amount of human
annotation required.

In conclusion, we have presented an automated procedure
for generating synthetic training data for deep CNN object
detectors. The generation procedure takes into consideration
geometry and semantic segmentation of the scene in order to
make informed decisions regarding the positions and scales
of the objects. We have employed two state-of-the-art object
detectors and demonstrated an increase in their performance
when they are trained with an augmented training set. In
addition, we also investigated the effect of different generation
parameters and provided some insight that could prove useful
in future attempts to generate synthetic data for training object
detectors.
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