Skip to main content
Log in

Magnetic behavior of oxide passivated (Fe0.85Nd0.15)0.6B0.4 amorphous nanoparticles

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

We report on magnetic amorphous (Fe0.85Nd0.15)0.6B0.4 nanoparticles showing an enhanced thermagnetic stability regarding to their size, with a blocking temperature higher than room temperature. Magnetization and Mössbauer spectroscopy results suggest that the ideally spherical nanoparticles conformation is almost equally distributed between an ordered core and an iron oxide shell (Fe2O3). Magnetization measurements are described by a phenomenological model comprising a ferromagnetic core represented by the Bloch´s law and a magnetically disordered contribution obeying the Curie law. The interaction of the core with the oxide shell would be enough to thermally stabilize the nanoparticles against superparamagnetism.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Data availability

Data will be available on reasonable request.

Notes

  1. A TB ~ 380 K was estimated by fitting the coercive field vs. temperature using the Stoner-Wolfarth model.

  2. To calculate the Msat of the alloy, only the ferromagnetic contribution of the Fe was considered, given that Nd is paramagnetic at RT and it is consequently not saturated.[N. W. Ashcroft and N. D. Mermin, Solid State Physiscs, Saunders College Publishing, 1976].

References

  1. Q.A. Pankhurst, J.S. Connoly, S.K. Jones, J. Dobson, J. Phys. D: Appl. Phys 36(13), R167–R181 (2003). https://doi.org/10.1088/0022-3727/36/13/201

    Article  CAS  Google Scholar 

  2. Z. Zhang, Y.C. Feng, T. Clinton, G. Badran, N. Yeh, G. Tarnopolsky, E. Girt, M. Munteanu, S. Harkness, H. Richter, T. Nolan, R. Ranjan, S. Hwang, G. Rauch, M. Ghaly, D. Larson, E. Singleton, V. Vas’ko, J. Ho, F. Stageberg, K. Vee, K. Duxstad, S. Slade, IEEE Tran. Magn. 38, 1861–1866 (2002). https://doi.org/10.1109/TMAG.2002.801782

    Article  CAS  Google Scholar 

  3. W.H. Azmi, M.Z. Sharif, T.M. Yusof, R. Mamat, A.A.M. Redhwan, Renew. Sustain. Energy Rev. 69, 415–428 (2017). https://doi.org/10.1016/j.rser.2016.11.207

    Article  CAS  Google Scholar 

  4. C.B. Bean, J.D. Livingston, J. Appl. Phys. 30, 120S-129S (1959). https://doi.org/10.1063/1.2185850

    Article  CAS  Google Scholar 

  5. R.H. Kodama, A.E. Berkowitz, E.J. McNiff, S. Foner, Phys. Rev. Lett. 77, 394–397 (1996). https://doi.org/10.1103/PhysRevLett.77.394

    Article  CAS  Google Scholar 

  6. V. Skumryev, S. Stoyanov, Y. Zhang, G. Hadjipanayis, D. Givord, J. Nogués, Nature 423, 850–853 (2003). https://doi.org/10.1038/nature01687

    Article  CAS  Google Scholar 

  7. J.B. Tracy, D.N. Weiss, D.P. Dinega, M.G. Bawendi, Phys. Rev. B 72, 064404 (2005). https://doi.org/10.1103/PhysRevB.72.064404

    Article  CAS  Google Scholar 

  8. G.C. Hadjipanayis, J. Magn. Mater. 200, 373–391 (1999)

    Article  CAS  Google Scholar 

  9. K. Simeonidis, C. Sarafidis, E. Papastergiadis, M. Angelakeris, I. Tsiaoussis, O. Kalogirou, Intermetallics 19, 589–595 (2011). https://doi.org/10.1016/j.intermet.2010.12.012

    Article  CAS  Google Scholar 

  10. H. Wakayama, H. Yonekura, Mater. Chem. Phys. 227, 265–268 (2019). https://doi.org/10.1016/j.matchemphys.2019.01.073

    Article  CAS  Google Scholar 

  11. R.C. O‘Handley, Hard Magnetic Materials Modern Magnetic Materials: Principles and Applications (Willey, New York, Chichester, Weinheim, Brisbane, Singapore, Toronto, 2000), pp.503–511

    Google Scholar 

  12. R.D. Zysler, C.A. Ramos, H. Romero, A. Ortega, J. Mater. Sci. 36(9), 2291–2294 (2001). https://doi.org/10.1023/A:1017524923761

    Article  CAS  Google Scholar 

  13. M. Tortarolo, R. Zysler, H. Romero, H. Troiani, Physica B 354, 117–120 (2004). https://doi.org/10.1016/j.physb.2004.09.031

    Article  CAS  Google Scholar 

  14. E. Murad, J. H. Johnston, in Mössbauer Spectroscopy Applied to Inorganic Chemistry, vol. 2. ed. by G. Long (Plenum Publ. Corp., New York, 1987), p. 507.

    Google Scholar 

  15. L. Machala, R. Zboril, A. Gedanken, J. Phys. Chem. B 111(16), 4003–4018 (2007). https://doi.org/10.1021/jp064992s

    Article  CAS  Google Scholar 

  16. I.S. Lyubutin, S.S. Starchikov, T.V. Bukreeva, I.A. Lysenko, S.N. Sulyanov, N.Y. Korotkov, S.S. Rumyantseva, I.V. Marchenko, K.O. Funtov, A. Vasiliev, L, Mater. Sci. Eng. C Mater. Biol. Appl. 45, 225–233 (2014). https://doi.org/10.1016/j.msec.2014.09.017

    Article  CAS  Google Scholar 

  17. K. Závěta, A. Lančok, M. Maryško, E. Pollert, D. Horák, J. Czechoslov, J. Phys. 56(3), E83–E91 (2006). https://doi.org/10.1007/s10582-006-0474-y

    Article  Google Scholar 

  18. R. Prozorov, T. Prozorov, S.K. Mallapragada, B. Narasimhan, T.J. Williams, D.A. Bazylinski, Phys. Rev. B: Condens. Matter 76, 54406 (2007). https://doi.org/10.1103/PhysRevB.76.054406

    Article  CAS  Google Scholar 

  19. P. Ayyub, M. Multani, M. Barma, V.R. Palkar, R. Vijayaraghavan, J. Phys. C: Solid State Phys. 21, 2229–2246 (1988). https://doi.org/10.1088/0022-3719/21/11/014

    Article  CAS  Google Scholar 

  20. R. Oshima, F.E. Fujita, Jpn. J. Appl. Phys. 20, 1 (1981). https://doi.org/10.1143/JJAP.20.1

    Article  CAS  Google Scholar 

  21. C.L. Chien, K.M. Unruh, Phys. Rev. B 25(9), 5790–5796 (1982). https://doi.org/10.1103/PhysRevB.25.5790

    Article  CAS  Google Scholar 

  22. D. Rodríguez, F. Plazaola, J. Garitaonandia, Hyperfine Interact. 169, 1231–1234 (2006). https://doi.org/10.1007/s10751-006-9429-8

    Article  CAS  Google Scholar 

  23. E. De Biasi, R.D. Zysler, C.A. Ramos, H. Romero, D. Fiorani, Phys. Rev. B 71, 104408 (2005). https://doi.org/10.1103/PhysRevB.71.104408

    Article  CAS  Google Scholar 

  24. E. Tronc, D. Fiorani, M. Nogués, A.M. Testa, F. Lucari, F. D’Orazio, J.M. Grenèche, W. Wernsdorfer, N. Galvez, C. Chenéac, D. Mailly, J.P. Jolivet, J. Magn. Magn. Matter 262(1), 6–14 (2003). https://doi.org/10.1016/S0304-8853(03)00011-8

    Article  CAS  Google Scholar 

  25. M. B. Molina Concha., E. de Biasi., R. D. Zysler, Physica B 403, 390–393 (2008). https://doi.org/10.1016/j.physb.2007.08.057

    Article  CAS  Google Scholar 

  26. H. Kachkachi, A. Ezzir, M. Noguès, E. Tronc, Eur. Phys. J. B 14, 681–689 (2000). https://doi.org/10.1007/s100510051079

    Article  CAS  Google Scholar 

  27. J.P. Chen, C.M. Sorensen, K.J. Klabunde, G.C. Hadjipanayis, Phys. Rev. B51(17), 11527–11532 (1995). https://doi.org/10.1103/physrevb.51.11527

    Article  Google Scholar 

  28. J. Merikoski, J. Timonen, M. Mannien, P. Jena, Phys. Rev. Lett 66, 938–941 (2011). https://doi.org/10.1103/PhysRevLett.66.938

    Article  Google Scholar 

  29. C.M. Wang, D.R. Baer, L.E. Thomas, J.E. Amonette, J. Antony, Y. Qiang, G. Duscher, J. App. Phys. 98, 094308 (2005). https://doi.org/10.1063/1.2130890

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr D. Lamas for the fruitful discussions on XRD characterization. Nanoparticles were synthesized by Dr H. Romero, Universidad de los Andes, Mérida, Venezuela.

Funding

A. Mijovilovich is grateful for funding by the Ministry of Education, Youth and Sports of the Czech Republic with co-financing from the EU (Grant ¨KOROLID¨, CZ.02.1.01/0.0/0.0/15_003/0000336) and the Czech Academy of Sciences (RVO 600 600 77 344). M. Tortarolo, R. D. Zysler and C. P. Ramos thank CNEA and INN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. P. Ramos.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 92 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tortarolo, M., Mijovilovich, A., Macedo, W.A.A. et al. Magnetic behavior of oxide passivated (Fe0.85Nd0.15)0.6B0.4 amorphous nanoparticles. MRS Communications 13, 438–444 (2023). https://doi.org/10.1557/s43579-023-00368-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-023-00368-9

Keywords

Navigation