Skip to main content

Advertisement

Log in

Feasibility of quercetin dietary supplement as reducing and stabilizing agent: Green route of silver nanoparticles using a bioactive flavonoid

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

This work focused on investigating whether quercetin from a dietary supplement can be used as an efficient reducing and stabilizing agent to obtain suitable silver nanoparticles (AgNPs) through a green synthesis. Antibacterial activity was tested against S. aureus, E. coli, and P. mirabilis for finding high inhibition values using this new route, even more significant than the values reported in current literature. Results stated that it is possible to synthesize spherical AgNPs with excellent stability and antimicrobial activity using a dietary supplement (low purity 20%). The success of this filing is due to the significant solubility provided by the other ingredients present in the dietary supplement.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

References

  1. H.B. Dias, M.I.B. Bernardi, T.M. Bauab, A.C. Hernandes, A.N. de Souza Rastelli, Titanium dioxide and modified titanium dioxide by silver nanoparticles as an anti biofilm filler content for composite resins. Dent. Mater. (2019). https://doi.org/10.1016/j.dental.2018.11.002.

  2. E. Fortunati, M. Peltzer, I. Armentano, A. Jiménez, J.M. Kenny, Combined effects of cellulose nanocrystals and silver nanoparticles on the barrier and migration properties of PLA nano-biocomposites. J. Food Eng. (2013). https://doi.org/10.1016/j.jfoodeng.2013.03.025.

    Article  Google Scholar 

  3. S. Kumar, A. Shukla, P.P. Baul, A. Mitra, D. Halder, Biodegradable hybrid nanocomposites of chitosan/gelatin and silver nanoparticles for active food packaging applications. Food Packag. Shelf Life. (2018). https://doi.org/10.1016/j.fpsl.2018.03.008.

    Article  Google Scholar 

  4. B. Pannerselvam, M.K. Dharmalingam Jothinathan, M. Rajenderan, P. Perumal, K. Pudupalayam Thangavelu, H.J. Kim, V. Singh, S.K. Rangarajulu, An in vitro study on the burn wound healing activity of cotton fabrics incorporated with phytosynthesized silver nanoparticles in male Wistar albino rats. Eur. J. Pharm. Sci. (2017). https://doi.org/10.1016/j.ejps.2017.01.015.

  5. Y. Singh, B.P. Shukla, R. Jain, A. Jaiswal, Comparative evaluation of haemato-biochemical changes during infected wound healing in cow calves with the use of silver nano particle gel and povidone iodine. Vet. Pract. (2016).

  6. C.H.N. Barros, S. Fulaz, D. Stanisic, L. Tasic, Biogenic nanosilver against multidrug-resistant bacteria (MDRB) antibiotics. Antibiotics. (2018). https://doi.org/10.3390/antibiotics7030069.

    Article  Google Scholar 

  7. X.Z. Li, H. Nikaido, K.E. Williams, Silver-resistant mutants of Escherichia coli display active efflux of Ag+ and are deficient in porins. J. Bacteriol. (1997). https://doi.org/10.1128/jb.179.19.6127-6132.1997.

    Article  Google Scholar 

  8. Y. Li, M. Ma, W. Chen, L. Li, M. Zen, Preparation of Ag-doped TiO2 nanoparticles by a miniemulsion method and their photoactivity in visible light illuminations. Mater. Chem. Phys. (2011). https://doi.org/10.1016/j.matchemphys.2011.04.055.

    Article  Google Scholar 

  9. S. Natarajan, M. Bhuvaneshwari, D.S. Lakshmi, P. Mrudula, N. Chandrasekaran, A. Mukherjee, Antibacterial and antifouling activities of chitosan/TiO 2/Ag NPs nanocomposite films against packaged drinking water bacterial isolates. Environ. Sci. Pollut. Res. (2016). https://doi.org/10.1007/s11356-016-7102-6.

    Article  Google Scholar 

  10. M. Robles-Martínez, J.F.C. González, F.J. Pérez-Vázquez, J.M. Montejano-Carrizales, E. Pérez, R. Patiño-Herrera. Antimycotic activity potentiation of Allium sativum extract and silver nanoparticles against Trichophyton rubrum. Chem. Biodivers. (2019). https://doi.org/10.1002/cbdv.201800525.

    Article  Google Scholar 

  11. E. Busquets i Alibés, Breve historia de la ética. Bioètica & debat: Tribuna abierta del Institut Borja de Bioètica. (2013).

  12. S. Jain, M.S. Mehata. Medicinal plant leaf extract and pure flavonoid mediated green synthesis of silver nanoparticles and their enhanced antibacterial property. Sci. Rep. (2017). https://doi.org/10.1038/s41598-017-15724-8.

    Article  Google Scholar 

  13. B. Saha, S. Kumar, S. Sengupta, Green synthesis of nano silver on TiO2 catalyst for application in oxidation of thiophene. Chem. Eng. Sci. (2019). https://doi.org/10.1016/j.ces.2018.12.063.

    Article  Google Scholar 

  14. A.T.M. Saeb, A.S. Alshammari, H. Al-Brahim, K.A. Al-Rubeaan, Production of silver nanoparticles with strong and stable antimicrobial activity against highly pathogenic and multidrug resistant bacteria. Sci. World J. (2014). https://doi.org/10.1155/2014/704708.

    Article  Google Scholar 

  15. A. Verma, M.S. Mehata, Controllable synthesis of silver nanoparticles using Neem leaves and their antimicrobial activity. J. Radiat. Res. Appl. Sci. (2016). https://doi.org/10.1016/j.jrras.2015.11.001.

    Article  Google Scholar 

  16. A.A.W. Bauer, W.M.M. Kirby, J.C. Sherris, M.D.M. Turck, Antibiotic susceptibility testing by a standardized single disk method (1966).

  17. M.J. Hajipour, K.M. Fromm, A. Akbar Ashkarran, D. Jimenez de Aberasturi, I.R. de Larramendi, T. Rojo, V. Serpooshan, W.J. Parak, M. Mahmoudi, Antibacterial properties of nanoparticles. Trends Biotechnol. (2012). https://doi.org/10.1016/j.tibtech.2012.06.004.

  18. Y. Xing, X. Li, L. Zhang, Q. Xu, Z. Che, W. Li, Y. Bai, K. Li, Effect of TiO2 nanoparticles on the antibacterial and physical properties of polyethylene-based film. Prog. Org. Coat. (2012). https://doi.org/10.1016/j.porgcoat.2011.11.005.

    Article  Google Scholar 

  19. S. Yallappa, J. Manjanna, B.L. Dhananjaya, Phytosynthesis of stable Au, Ag and Au–Ag alloy nanoparticles using J. sambac leaves extract, and their enhanced antimicrobial activity in presence of organic antimicrobials. Spectrochim. Acta Part A (2015). https://doi.org/10.1016/j.saa.2014.08.030.

  20. M.K. Rai, SD. Deshmukh, A.P. Ingle, A.K. Gade, Silver nanoparticles: the powerful nanoweapon against multidrug‐resistant bacteria. J. Appl. Microbiol. (2012). https://doi.org/10.1111/j.1365-2672.2012.05253.x.

    Article  Google Scholar 

  21. K. Jeeva, M. Thiyagarajan, V. Elangovan, N. Geetha, P. Venkatachalam, Caesalpinia coriaria leaf extracts mediated biosynthesis of metallic silver nanoparticles and their antibacterial activity against clinically isolated pathogens. Ind. Crops Prod. (2014). https://doi.org/10.1016/j.indcrop.2013.11.037.

    Article  Google Scholar 

  22. M. Catauro, F. Papale, F. Bollino, S. Piccolella, S. Marciano, P. Nocera, S. Pacifico, Silica/quercetin sol–gel hybrids as antioxidant dental implant materials. Sci. Technol. Adv. Mater. (2015). https://doi.org/10.1088/1468-6996/16/3/035001.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Joazet Ojeda and Claudia Hernández for their support during the TEM and XRD analyses.

Funding

M.G. Peña-Juarez and J.A. Gonzalez-Calderon are grateful to Consejo Nacional de Ciencia y Tecnología (Conacyt México) for Ph.D. scholarship (No: 744689) and the “Cátedras-Conacyt” program, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Gonzalez-Calderon.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peña-Juarez, M.G., Mayorga-Colunga, P.C., Rivera-Hernandez, C.A. et al. Feasibility of quercetin dietary supplement as reducing and stabilizing agent: Green route of silver nanoparticles using a bioactive flavonoid. MRS Communications 11, 498–503 (2021). https://doi.org/10.1557/s43579-021-00063-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-021-00063-7

Keywords

Navigation