Skip to main content
Log in

Photoelectrochemical Properties of Highly-ordered Titania Nanotube-arrays

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

We report on non-particulate titania photoelectrodes with a unique highly-ordered nanotube-array architecture prepared by an anodization process that enables precise control over array dimensions. Under 320–400 nm illumination titania nanotube-array photoanodes, pore size 110 nm, wall thickness 20 nm, and 6 μm length, generate hydrogen by water photoelectrolysis at a normalized rate of 80 mL/W·hr, to date the most efficient titania-based photoelectrochemical device, with a conversion efficiency of 12.25%. The highly-ordered nanotubular architecture allows for superior charge separation and charge transport, with a calculated quantum efficiency of nearly 100% for incident photons with energies larger than the titania bandgap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. M. Aroutiounian, V. M. Arakelyan, G. E. Shahnazaryan, Solar Energy and references therein, in press (2004)

    Google Scholar 

  2. M. Gratzel, Journal of Photochemistry and Photobiology C-Photochemistry Reviews 4, 145–153 (2003)

    Article  CAS  Google Scholar 

  3. M. Gratzel, Nature 414, 338–344 (2001)

    Article  CAS  Google Scholar 

  4. M. Gratzel, Journal of Photochemistry and Photobiology a-Chemistry 164, 3–14 (2004)

    Article  CAS  Google Scholar 

  5. M. K. Nazeeruddin et al., Journal of the American Chemical Society 123, 1613–1624 (2001)

    Article  CAS  Google Scholar 

  6. F. Cao, G. Oskam, G. J. Meyer, P. C. Searson, Journal of Physical Chemistry 100, 17021–17027 (1996)

    Article  CAS  Google Scholar 

  7. P. E. deJongh, D. Vanmaekelbergh, Physical Review Letters 77, 3427–3430 (1996)

    Article  Google Scholar 

  8. X. Zhang et al., Journal of the Electrochemical Society 148, G398–G400 (2001)

    Article  CAS  Google Scholar 

  9. S. J. Limmer, T. P. Chou, G. Z. Cao, Journal of Materials Science 39, 895–901 (2004)

    Article  CAS  Google Scholar 

  10. S. Yoo, S. A. Akbar, K. H. Sandhage, Adv. Mater. 16, 260 (2004)

    Article  CAS  Google Scholar 

  11. M. Adachi, Y. Murata, I. Okada, S. Yoshikawa, Journal of the Electrochemical Society, 150, G488–G493 (2000)

    Article  Google Scholar 

  12. Y. C. Zhu, H. L. Li, Y. Koltypin, Y. R. Hacohen, A. Gedanken, Chemical Communications, 24, 2616–2617 (2001)

    Article  Google Scholar 

  13. T. Y. Peng, A. Hasegawa, J. R. Qiu, K. Hirao, Chemistry of Materials 15, 2011–2016 (2003)

    Article  CAS  Google Scholar 

  14. I. M. Butterfield et al., Journal of Applied Electrochemistry 27, 385–395 (1997)

    Article  CAS  Google Scholar 

  15. O. K. Varghese, D. W. Gong, M. Paulose, C. A. Grimes, E. C. Dickey, Journal of Materials Research 18, 156–165 (2003)

    Article  CAS  Google Scholar 

  16. G. K. Mor, O. K. Varghese, M. Paulose, N. Mukherjee, C. A. Grimes, Journal of Materials Research 18, 2588–2593 (2003)

    Article  CAS  Google Scholar 

  17. O.K. Varghese, G. K. Mor, C. A. Grimes, M. Paulose, N. Mukherjee, J. Nanoscience Nanotechnology 4, 733 (2004)

    Article  CAS  Google Scholar 

  18. We note the hydrogen sensitivity of the material is the largest known sensitivity of any material, to any gas, at any temperature; at 23°C in response to 1000 ppm hydrogen the nanotubes demonstrate a 1,000,000,000% change in electrical resistivity.

  19. G. K. Mor, M. A. Carvalho, O. K. Varghese, M. V. Pishko, C. A. Grimes, Journal of Materials Research 19, 628–634 (2004)

    Article  CAS  Google Scholar 

  20. D. Vanmaekelbergh, P. E. de Jongh, Journal of Physical Chemistry B 103, 747–750 (1999)

    Article  CAS  Google Scholar 

  21. A. Hamnett, Faraday Discussions of the Chemical Society 70, 127 (1980)

    Google Scholar 

  22. K.-N. P. Kumar, K. Keizer, A. J. Burggraaf, T. Okubo and H. Nagamoto, J. Mater. Chem. 3, 1151 (1993)

    Article  CAS  Google Scholar 

  23. P.I. Gouma and M.J. Mills, J. Am. Ceram. Soc. 84, 619 (2001)

    Article  CAS  Google Scholar 

  24. A. Hagfeldt and M. Gratzel, Chemical Reviews 95, 49 (1995)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig A. Grimes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paulose, M., Varghese, O.K., Shankar, K. et al. Photoelectrochemical Properties of Highly-ordered Titania Nanotube-arrays. MRS Online Proceedings Library 837, 39–44 (2004). https://doi.org/10.1557/PROC-837-N3.13

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-837-N3.13

Keywords

Navigation