Skip to main content
Log in

Optical Interactions and Photoluminescence Properties of Wide-Bandgap Nanocrystallites

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The UV-photoluminescence (PL) properties of GaN and ZnO nanocrystallites and nanocrystallite ensembles were studied utilizing micro-photoluminescence. We address the origin of the light emissions of the nanocrystallite as to whether it is due a bandgap or excitonic recombination process. The other topic presented here focuses on the interaction of the laser with a collective of crystallites; we address the phenomena of intensity saturation at a high density of laser excitations as well as the impact of the vacuum state on the PL characteristics. Our analysis indicates that the PL of both GaN and ZnO nanocrysallites is excitonic-like and very similar to the behavior of the free exciton in bulk materials. Additionally, we attribute the intensity saturation of GaN and ZnO to the laser heating and heat trapping which takes place in the enclosure of the nanocrystallite ensemble. In vacuum the PL energy was found to exhibit a strong PL energy redshift relative to the PL in air. We attribute the observed shift to a thermal effect and analyze it in terms of the conditions enabling a convective cooling in the ensemble: the mean free path of air in atmospheric pressure and in vacuum relative to the interparticle separation inside the ensemble.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. (a) Semiconductors and semimetals Vol. 57, edited by J. I. Pankove and T. D. Moustakas (Academic, San Diego, 1999). (b) H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, J. Appl. Phys. 76, 1363 (1994).

  2. A. Van Dijken, E.A. Meulenkamp, D. Vanmakelbergh, and A. Meijerink, J. of Luminesc. 90, 123 (2000).

    Article  Google Scholar 

  3. D.C. Look, Mater. Sci. Engin. B 80, 383 (2001).

    Article  Google Scholar 

  4. J.E. Nause, III-Vs Review 12 (4), 28–31 (1999).

    Article  Google Scholar 

  5. T. Minami, MRS Bulletin 25 (8), 38 (2000).

    Article  CAS  Google Scholar 

  6. A. Nuruddin and J.R. Abelson, Thin Solid Films 394, 49 (2001).

    Article  CAS  Google Scholar 

  7. A. P. Purdy, Chem. Matter. 11, 1648 (1999).

    Article  CAS  Google Scholar 

  8. a) L. Bergman, X. B. Chen, A. Purdy, Appl. Phys. Lett. 83, 764 (2003). b) L. Bergman, et. al. MRS Proceedings, V. 776, Q1.1 (spring 2003)

    Article  CAS  Google Scholar 

  9. W. -Q. Han, and A. Zettl, Appl. Phys. Lett. 81, 5051 (2002).

    Article  CAS  Google Scholar 

  10. M. W. Lee, H. Z. Twu, C. -C. Chen, and C. -H. Chen, Appl. Phys. Lett. 79, 3693 (2001).

    Article  CAS  Google Scholar 

  11. X. Duan and C. M. Lieber, J. Am. Chem. Soc. 122, 188 (2000).

    Article  CAS  Google Scholar 

  12. B. Monemar, Phys. Rev. B 10, 676 (1974).

    Article  CAS  Google Scholar 

  13. L. Wang and N.C. Giles, J. Appl. Phys. 94, 973 (2003).

    Article  CAS  Google Scholar 

  14. Shirong Jin, Yanlan Zheng, and Aizhen Li, J. Appl. Phys. 82, 3870 (1997).

    Article  CAS  Google Scholar 

  15. T. Taguchi, J. Shirafuji, and Y. Inuishi, Phys. Status Solidi B 68, 727 (1975).

    Article  CAS  Google Scholar 

  16. D. E. Cooper, J. Bajaj, and P. R. Newmann, J. Cryst. Growth 86, 544 (1988).

    Article  CAS  Google Scholar 

  17. Z. C. Feng, A. Mascarenhas, and W. J. Choyke, J. Lumin. 35, 329 (1986).

    Article  CAS  Google Scholar 

  18. Q. Kim and D. W. Langer, Phys. Status Solidi B 122, 263 (1984).

    Article  CAS  Google Scholar 

  19. T. Schmidt, K. Lischka, and W. Zulehner, Phys. Rev. B 45, 8989 (1992).

    Article  CAS  Google Scholar 

  20. J. E. Fouquet and A. E. Siegman, Appl. Phys. Lett. 46, 280 (1984).

    Article  Google Scholar 

  21. J. Wagner, Phys. Rev. B29, 2002 (1984).

    Article  Google Scholar 

  22. Th. Forster, “Excitation Transfer” in Comparative Effects of Radiation, PP.300 (Wiley and Sons, New York 1960).

    Google Scholar 

  23. M. Yoshikawa, M. Kunzer, J. Wagner, H. Obloh, P. Schlotter, R. Schmidt, N. Herres, and U. Kaufmann, J. Appl. Phys. 86, 4400 (1999).

    Article  CAS  Google Scholar 

  24. I-H Lee, J.J. Lee, P. Kung, F.J. Sanchez, and M. Razeghi, Appl. Phys. Lett. 74, 102 (1999).

    Article  CAS  Google Scholar 

  25. L. Vina, S. Logothetidis, and M. Cardona, Phys. Rev. B30, 1979 (1984).

    Article  Google Scholar 

  26. L. Bergman, M. Dutta, M.A. Stroscio, S.M. Komirenko, R. J. Nemanich, C.J. Eiting, D.J.H. Lambert, H.K. Kwon, and R. D. Dupuis, Appl. Phys. Lett. 76, 1969 (2000).

    Article  CAS  Google Scholar 

  27. Leah Bergman, Mitra Dutta, and Robert J. Nemanich. “Raman Analysis of Wide Band Gap Nitrides; Film, Crystals, and Superlatices”, In Raman Scattering in Materials Science Science p. 273 (Editors: R. Merlin and W.H. Weber, Springer Verlag 2000).

    Chapter  Google Scholar 

  28. M.S. Liu, L.A. Bursill, S. Prawer, K.W. Nugent, Y.Z. Tong, and G.Y. Zhang, Appl. Phys. Lett. 74, 3125 (1999).

    Article  CAS  Google Scholar 

  29. H. Zhou, H. Alves, D.M. Hofmann, W. Kriegseis, B.K. Meyer, G. Kaczmarczyk, and A. Hoffmann, Appl. Phys. Lett. 80, 210 (2002).

    Article  CAS  Google Scholar 

  30. K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Vigt, and B.E. Gnade, J. Appl. Phys. 79, 7983, (1996).

    Article  CAS  Google Scholar 

  31. Alexander Roth, Vacuum technology (North-Holland, New York, 1976), p.37

    Google Scholar 

  32. CRC Handbook of Chemistry and Physics, edited by David R. Lide (CRC Press, 78th ed., 1997-1998).

    Google Scholar 

  33. J.F. Muth, J.H. Lee, I.K. Shmagin, R.M. Kolbas, H.C. Casey, B.P. Keller, U.K. Mishra, and S.P. DenBaars, Appl. Phys. Lett. 71, 2572 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Leah Bergman gratefully acknowledges NSF CAREER DMR-0238845, NSF-EPS-0132626. Andrew Purdy gratefully acknowledges the Office of Naval Research.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bergman, L., Chen, XB., Huso, J. et al. Optical Interactions and Photoluminescence Properties of Wide-Bandgap Nanocrystallites. MRS Online Proceedings Library 789, 63–68 (2003). https://doi.org/10.1557/PROC-789-N11.17

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-789-N11.17

Navigation