Skip to main content
Log in

Anisotropy in the Phonon Dispersion Relations of Graphite and Carbon Nanotubes Measured by Raman Spectroscopy

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The possible semiconducting device use of single wall carbon nanotubes (SWNTs) requires a technique for the determination of the exact structure of the nanotubes assembled in the device configuration. Raman spectroscopy has been established as a precise and non-destructive tool for the characterization of graphitic nanostructures. Double resonance theory, which is used to explain the dispersive nature of the Raman bands, has attracted much attention for its potential use for the characterization of the electronic and phonon spectra of these nanostructures. Dispersive features in the Raman spectra of low dimensional graphitic materials, such as carbon nanotubes, can be used to measure directly the anisotropy, or the trigonal warping effect, in the phonon dispersion relations about the hexagonal corner of the Brillouin zone (BZ) of graphite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. S. Dresselhaus, G. Dresselhaus, A. Jorio, A. G. Souza Filho and R. Saito, Carbon 40, 2043 (2002).

    Google Scholar 

  2. R. A. Jishi, L. Venkataraman, M. S. Dresselhaus and G. Dresselhaus, Chem. Phys. Lett. 209, 77 (1993).

    Google Scholar 

  3. A. Grüneis, R. Saito, T. Kimura, L. G. Cançado, M. A. Pimenta, A. Jorio, A. G. Souza Filho, G. Dresselhaus and M. S. Dresselhaus, Phys. Rev. B65, 155405 (2002).

    Google Scholar 

  4. R. Saito, G. Dresselhaus and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes, (Imperial College Press, London, 1998).

    Google Scholar 

  5. Y. Kawashima and G. Katagiri, Phys. Rev. B52, 10053 (1995).

    Google Scholar 

  6. Y. Kawashima and G. Katagiri, Phys. Rev. B59, 62 (1999).

    Google Scholar 

  7. P. H. Tan, Y. Tang, Y. M. Deng, F. Li, Y. L. Wei and H. M. Cheng, Appl. Phys. Lett. 75, 1524 (1999).

    Google Scholar 

  8. P. H. Tan, C. Y. Hu, J. Dong, W. C. Shen and B. F. Zhang, Phys. Rev. B64, 214301 (2001).

    Google Scholar 

  9. M. J. Matthews, M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus and M. Endo, Phys. Rev. B59, R6585 (1999).

    Google Scholar 

  10. C. Thomsen and S. Reich, Phys. Rev. Lett. 85, 5214 (2000).

    Google Scholar 

  11. R. Saito, A. Jorio, A. G. Souza Filho, G. Dresselhaus, M. S. Dresselhaus and M. A. Pimenta, Phys. Rev. Lett. 88, 027401 (2002).

    Google Scholar 

  12. J. H. Hafner, C. L. Cheung, T. H. Oosterkamp and C. M. Lieber, J. Phys. Chem. B105, 743 (2001).

    Google Scholar 

  13. A. G. Souza Filho, A. Jorio, Ge. G. Samsonidze, G. Dresselhaus, M. A. Pimenta, M. S. Dresselhaus, A. K. Swan, M. S. Ünlü, B. B. Goldberg and R. Saito, Phys. Rev. B66 (2002) in press.

  14. R. Saito, A. Jorio, A. G. Souza Filho, G. Dresselhaus, M. S. Dresselhaus, A. Grüneis, L. G. Cançado and M. A. Pimenta, Jpn. J. Appl. Phys. 41, 4878 (2002).

    Google Scholar 

  15. Ge. G. Samsonidze, R. Saito, A. Jorio, A. G. SouzaFilho, A. Grüneis, M. A. Pimenta, G. Dresselhaus and M. S. Dresselhaus, Phys. Rev. Lett. (2003) submitted.

    Google Scholar 

Download references

Acknowledgments

The MIT authors acknowledge support under NSF Grants DMR 01-16042 and INT 00-00408. R.S. and A.G. acknowledge a Grant-in-Aid (No. 13440091) from the Ministry of Education, Japan. A.J. and A.G.S.F. acknowledge support from the Brazilian agency CNPq under Profix and DCR contracts, respectively.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samsonidze, G.G., Saito, R., Jorio, A. et al. Anisotropy in the Phonon Dispersion Relations of Graphite and Carbon Nanotubes Measured by Raman Spectroscopy. MRS Online Proceedings Library 737, 810 (2002). https://doi.org/10.1557/PROC-737-F8.10

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-737-F8.10

Navigation