Skip to main content
Log in

Plasma Enhanced Atomic Layer Deposition of ZrO2 Gate Dielectric

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Zirconium oxide (ZrO2) films were investigated as a potential replacement for silicon dioxide gate dielectric. ZrO2 films were deposited by both atomic layer deposition (ALD) and plasma enhanced ALD (PEALD) techniques using Zr t-butoxide and Zr(NEt2)4 as Zr precursors and oxygen as reactant gas. The XTEM images showed a randomly oriented polycrystalline structure of ZrO2 and amorphous characteristics of the interfacial layer. The calculated dielectric constant value of the ZrO2 films are about 10∼18 and these low values are believed due to the low dielectric constant interface layer. ZrO2 films deposited with oxygen plasma using Zr(NEt2)4 showed the leakage current of 3.12X10-9 A/cm2 at the gate bias voltage of -1.0 Volt with the equivalent oxide thickness value of 1.39 nm. ZrO2 films deposited with the oxygen plasma showed generally improved film quality with relatively low leakage current, small hysteresis and low carbon incorporation as well as the higher growth rate compared to the films deposited with the oxygen gas. Also, ZrO2 films deposited using Zr(NEt2)4 showed relatively improved film properties compared to the films deposited using Zr t-butoxide. This study demonstrated the possible application of PEALD technique for the high quality ZrO2 gate dielectric film deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Watanabe, Appl. Phys. Lett., 78, 3803 (2001).

    Article  CAS  Google Scholar 

  2. T. S. Jeon, J. M. White and D. L. Kwong, Appl. Phys. Lett., 78, 368 (2001).

    Article  CAS  Google Scholar 

  3. K. J. Hubbard and D. G. Schlom, J. Mater. Res. 11, 2757 (1996).

    Article  CAS  Google Scholar 

  4. T. Ngai, W. J. Qi, R. Sharma, J. Fretwell, X. Chen, J. C. Lee and S. Banerjee, Appl. Phys. Lett., 76, 502 (2000).

    Article  CAS  Google Scholar 

  5. J. P. Chang and Y. S. Lin, J. Appl. Phys., 90, 2964 (2001).

    Article  CAS  Google Scholar 

  6. Y. Ma, Y. Ono, L. Stecker, D. R. Evans and S. T. Hsu, IEDM 149 (1999).

    Google Scholar 

  7. W. J. Qi, R. Nieh, B. H. Lee, L. Kang, Y. Jeon and J. C. Lee, Appl. Phys. Lett., 77, 3269 (2000).

    Article  CAS  Google Scholar 

  8. S. Jeon, C. Choi, T. Seong and H. Hwang, Appl. Phys. Lett., 79, 245 (2001).

    Article  CAS  Google Scholar 

  9. W. J. Qi, R. Nieh, B. H. Lee, K. Onishi, L. Kang, Y. Jeon, J. C. Lee, V. Kaushik, B. Y. Nguyen, L. Prabhu, K. Eisenbeiser and J. Finder, Tech. Dig. Of VLSI Symp., 41 (2000).

  10. M. Copel, M. Gribelyuk and E. Gusev, Appl. Phys. Lett., 76, 436 (2000)

    Article  CAS  Google Scholar 

  11. J. W. Uhm, S. S. Lee, J. W. Lee, T. H. Cha, K. S. Yi, Y. D. Kim and H. Jeon, J. Korean Phys. Soc., 35, 765 (1999).

    Google Scholar 

  12. J. Koo, Y. Kim and H. Jeon, Jap. J. Appl. Phys., 41, 5A (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koo, J., Han, J., Choi, S. et al. Plasma Enhanced Atomic Layer Deposition of ZrO2 Gate Dielectric. MRS Online Proceedings Library 716, 21 (2001). https://doi.org/10.1557/PROC-716-B2.1

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-716-B2.1

Navigation