Skip to main content
Log in

MRS 2001 (Boston): Design and Quantification of a Nanoscale Field Effect Transistor: Distributed Response Analysis for Investigating Conductive Behaviour.

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

A new design for a field effect transistor able to push back the physical limits of Moore’s Law is described. An ab initio computational approach is presented that can be further developed to characterize the ON/OFF states of such a device. Distributed response analysis (M. in het Panhuis, P.L.A. Popelier, R.W. Munn, J.G. Ágyán (2001), J. Chem. Phys. 114, 7951-7961) is employed to investigate conductive behavior. The method demonstrates that in analogy to conduction an electron can move across a possible conjugated molecular switching element (para-nitroaniline) in an electric field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. See http://www.intel.com/research/silicon

  2. R. Chau, J. Kavalieros, B. Roberds, R. Schenker, D. Lionberger, D. Barlage, B. Doyle, R. Arghavani, A. Murthy and G. Dewey, Proceedings of IEEE 88, 15 (2000).

    Google Scholar 

  3. M.A. Reed and J.M. Tour, Sci. Am. 286, 86 (2000).

    Article  Google Scholar 

  4. M.A. Reed (2001), MRS Bulletin 26, 113 (2000).

    Article  CAS  Google Scholar 

  5. J.M. Tour, Acc. Chem. Res. 33, 791 (2000).

    Article  CAS  Google Scholar 

  6. C. Joachim, J.K. Gimzewski and A. Aviram, Nature 408, 541 (2000).

    Article  CAS  Google Scholar 

  7. T. Rueckes, K. Kim, E. Joselevich, G.Y. Tseng, C.-L. Cheung and C.M. Lieber, Science 289, 94 (2000).

    Article  CAS  Google Scholar 

  8. A. Aviram and M.A. Ratner, Chem. Phys. Letters 29, 277 (1974).

    Article  CAS  Google Scholar 

  9. C. Kergueris, J.P. Bourgoin, S. Palacin, D. Estève, C. Urbina, M. Magoga and C. Joachim, Phys. Rev. B 59, 12505 (1999).

    Article  CAS  Google Scholar 

  10. S.N. Yaliraki, A.E. Roitberg, C. Gonzalez, V. Mujica and M.A. Ratner, J. Chem. Phys. 111, 6997 (1999).

    Article  CAS  Google Scholar 

  11. L.E. Hall, J.R. Reimers, N.S. Hush and K. Silverbrook, J. Chem. Phys. 112, 1510 (2000).

    Article  CAS  Google Scholar 

  12. A.J. Stone, Mol. Phys. 56, 1065 (1985).

    Article  CAS  Google Scholar 

  13. H. Reis, M.G. Papadopoulos, C. Hättig, J. Ángyán and R.W. Munn, J. Chem. Phys. 112, 6161 (2000).

    Article  CAS  Google Scholar 

  14. J. Ángyán, G. Jensen, M. Loos, C. Hättig and B.A. Heß, Chem. Phys. Letters 219, 267 (1994).

    Article  Google Scholar 

  15. M. in het Panhuis, P.L.A. Popelier, R.W. Munn and J. Ángyán, J. Chem. Phys. 114, 7951 (2001).

    Article  Google Scholar 

  16. M. in het Panhuis, S. O’Flaherty, P.L.A. Popelier, R.W. Munn and W.J. Blau, in preparation.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panhuis, M., Coleman, J.N., Popelier, P.A. et al. MRS 2001 (Boston): Design and Quantification of a Nanoscale Field Effect Transistor: Distributed Response Analysis for Investigating Conductive Behaviour.. MRS Online Proceedings Library 706, 1161 (2001). https://doi.org/10.1557/PROC-706-Z11.6.1

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-706-Z11.6.1

Navigation