Skip to main content
Log in

The Inverse Hall-Petch Effect—Fact or Artifact?

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

This paper critically reviews the data in the literature which gives softening—the inverse Hall-Petch effect—at the finest nanoscale grain sizes. The difficulties with obtaining artifactfree samples of nanocrystalline materials will be discussed along with the problems of measurement of the average grain size distribution. Computer simulations which predict the inverse Hall-Petch effect are also noted as well as the models which have been proposed for the effect. It is concluded that while only a few of the experiments which have reported the inverse Hall-Petch effect are free from obvious or possible artifacts, these few along with the predictions of computer simulations suggest it is real. However, it seems that it should only be observed for grain sizes less than about 10 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Gleiter, “Nanocrystalline Materials,” Progress in Materials Science, 33 (1989), 223–315.

    Article  CAS  Google Scholar 

  2. J. R. Weertman, D. Farkas, K. Hemker, H. Kung, M. Mayo, R. Mitra, H. Van Swygenhoven, MRS Bulletin, 24 (1999), 44.

    Article  CAS  Google Scholar 

  3. E. O. Hall, Proc. Roy. Soc. (London) 364 (1951) 474.

    Google Scholar 

  4. N. J. Petch, J. Iron Steel Inst. 174 (1953) 25.

    CAS  Google Scholar 

  5. A. H. Cottrell, Trans. TMS-AIME, 212 (1958) 192.

    CAS  Google Scholar 

  6. M. Ke, S. A. Hackney, W. W. Milligan, and E. C. Aifantis, NanoStructured Mater. 5 (1995) 689.

    Article  CAS  Google Scholar 

  7. A. H. Chokshi, A. Rosen, J. Karch, and H. Gleiter, Scripta Metall. 23 (1989) 1679.

    Article  CAS  Google Scholar 

  8. D. G. Morris, “Mechanical Behavior of Nanostructured Materials,” Material Science Foundations, No. 2, ed. M. Magini and F. H. Wohlbier, (Uetikon-Zurich, Switzerland: Trans. Tech. Pubs., 1998) 43–44.

  9. G. W. Nieman, J. R. Weertman, and R. W. Siegel, J. Mater. Res., 6 (1991), 1012.

    Article  CAS  Google Scholar 

  10. H. Alves, M. Ferreira, KöU. ster, and MüB. ller, Mater. Sci. Forum 225–226 (1996) 769.

    Article  Google Scholar 

  11. K. Lu, W. D. Wei, and J. T. Wang, Scripta Metall. Mater. 24 (1990) 2319.

    Article  CAS  Google Scholar 

  12. G. W. Nieman and J. R. Weertman, Morris E. Fine Symposium, (Warrendale, PA: The Minerals, Metals & Materials Society, 1991), 243–250.

    Google Scholar 

  13. R. Mitra T. Ungar, T. Morita, P. G. Sanders, J. R. Weertman, “Assessment of Grain Size Distribution in Nanocrystalline Copper and their Effect on Mechanical Behavior,” Advanced Materials for the 21st Century: The 1999 Julia R. Weertman Symposium, ed. Y.-W. Chung et al., (Warrendale, PA: The Minerals, Metals & Materials Society, 1999), 553–564.

  14. X. Zhang, H. Wang, J. Narayan, and C. Koch, “Evidence for Formation Mechanism of Nanoscale Microstructures in Cryomilled Zn Powder,” (Submitted for publication, 2000).

    Google Scholar 

  15. G. W. Nieman, J. R. Weertman, and R. W. Siegel, Scripta Met. Mater., 23 (1989), 2013.

    Article  CAS  Google Scholar 

  16. G. Palumbo, U. Erb, and K. T. Aust, Scripta Met. Mater. 24 (1990) 2347.

    Article  CAS  Google Scholar 

  17. T. Christman and M. Jain, Scripta Met. Mater., 25 (1991) 767.

    Article  CAS  Google Scholar 

  18. D. K. Kim and K. Okazaki, Mater. Sci. Forum, 88–90 (1992) 553.

    Article  Google Scholar 

  19. H. Cheung, C. J. Altstetter, and R. S. Averback, J. Mater. Res. 7 (1992) 2962.

    Article  Google Scholar 

  20. C. Cheung, G. Palumbo, and U. Erb, Scripta Met. Mater. 31 (1994) 735.

    Article  CAS  Google Scholar 

  21. A. S. Khan, H. Zhang, L. Takacs, Inter. J. Plasticity, 16 (2000) 1459.

    Article  CAS  Google Scholar 

  22. J. S. C. Jang and C. C. Koch, Scripta Metall. Mater. 24 (1990) 1599.

    Article  CAS  Google Scholar 

  23. T. R. Mallow and C. C. Koch, Metall. and Mater. Trans. A 29 (1998) 2285.

    Article  Google Scholar 

  24. A. M. El-Sherik, U. Erb, G. Palumbo, and K. T. Aust, Scripta Met. Mat. 27 (1992) 1185.

    Article  Google Scholar 

  25. U. Erb, NanoStructured Mater. 6 (1995) 533.

    Article  Google Scholar 

  26. J. Narayan, C. C. Koch, X. Zhang, and R. Venkatesan, unpublished results, 2000.

    Google Scholar 

  27. J. Narayan, J. Nanoparticle Research 2(1) (2000) 91.

    Article  CAS  Google Scholar 

  28. J. Schiøtz, F. D. DiTolla, and K. W. Jacobsen, Nature 391 (1998) 561.

    Article  Google Scholar 

  29. H. Van Swygenhoven, A. Caro, M. Spaczer, “Atomistic view of plasticity in nanophase materials,” Advanced Materials for the 21st Century: The 1999 Julia R. Weertman Symposium, ed. Y.-W. Chung et al., (Warrendale, PA: The Minerals, Metals & Materials Society, 1999), 399.

    Google Scholar 

  30. S. Yip, Nature 391 (1998) 532.

    Article  CAS  Google Scholar 

  31. T. G. Nieh and J. Wadsworth, Scripta Met. Mat. 25 (1991) 955.

    Article  CAS  Google Scholar 

  32. J. E. Carsley, J. Ning, W. W. Milligan, S. A. Hackney and E. C. Aifantis, NanoStructured Mater. 5 (1995) 441.

    Article  CAS  Google Scholar 

  33. N. Wang, Z. Wang, K. T. Aust, and U. Erb, Acta Met. Mat. 43 (1995) 519.

    Article  CAS  Google Scholar 

  34. R. A. Masumura, P. M. Hazzledine, and C. S. Pande, Acta Mat. 46 (1998) 4527.

    Article  CAS  Google Scholar 

  35. H. Hahn and K. A. Padmanabhan, Phil. Mag. B 76 (1997) 559.

    Article  CAS  Google Scholar 

  36. H. Conrad and J. Narayan, Scripta Mater. 42 (2000) 1025.

    Article  CAS  Google Scholar 

  37. R. O. Scattergood and C. C. Koch, Scripta Met. Mat. 27 (1992) 1195.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koch, C.C., Narayan, J. The Inverse Hall-Petch Effect—Fact or Artifact?. MRS Online Proceedings Library 634, 511 (2000). https://doi.org/10.1557/PROC-634-B5.1.1

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-634-B5.1.1

Navigation