Skip to main content
Log in

Two- and Three-Dimensional Ultrananocrystalline Diamond (UNCD) Structures for a High Resolution Diamond-Based MEMS Technology

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Silicon is currently the most commonly used material for the fabrication of microelectromechanical systems (MEMS). However, silicon-based MEMS will not be suitable for long-endurance devices involving components rotating at high speed, where friction and wear need to be minimized, components such as 2-D cantilevers that may be subjected to very large flexural displacements, where stiction is a problem, or components that will be exposed to corrosive environments. The mechanical, thermal, chemical, and tribological properties of diamond make it an ideal material for the fabrication of long-endurance MEMS components. Cost-effective fabrication of these components could in principle be achieved by coating Si with diamond films and using conventional lithographic patterning methods in conjunction with e. g. sacrificial Ti or SiO2 layers. However, diamond coatings grown by conventional chemical vapor deposition (CVD) methods exhibit a coarse-grained structure that prevents high-resolution patterning, or a fine-grained microstructure with a significant amount of intergranular non-diamond carbon. We demonstrate here the fabrication of 2-D and 3-D phase-pure ultrananocrystalline diamond (UNCD) MEMS components by coating Si with UNCD films, coupled with lithographic patterning methods involving sacrificial release layers. UNCD films are grown by microwave plasma CVD using C60-Ar or CH4-Ar gas mixtures, which result in films that have 3–5 nm grain size, are 10-20 times smoother than conventionally grown diamond films, are extremely resistant to corrosive environments, and are predicted to have a brittle fracture strength similar to that of single crystal diamond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. P. Lee, A. P. Pisano, and M. G. Lim, Mat. Res. Soc. Symp. Proc. Vol. 276, 67 (1992).

    Article  CAS  Google Scholar 

  2. K. J. Gabriel, F. Behi, R. Mahadevan, and M. Mehregany; Sensors and Actuators A21-A23, 184 (1990).

    Article  Google Scholar 

  3. M. Neuberger, Mat. Res.Bull. vol 4, 365 (1969).

    Google Scholar 

  4. S. M. Spearing and K. S. Chen, in “Tribology Issues and Opportunities in MEMS”, edited by B. Bhushan, Kluwer Academic Publisher, The Netherlands (1998) p. 95.

  5. Z. Rymuza, Z. Kusznierewicz, M. Misiak, K. Schmidt-Szalowski, Z. Rzanek-Boroch, and J. Sentek, “Tribology Issues and Opportunities in MEMS”, edited by B. Bhushan, Kluwer Academic Publisher, The Netherlands (1998) p 579.

  6. M. N. Gardos, Tribol. Trans. 31, 427(1988); Tribol. Trans. 32, 30 (1989).

    Article  CAS  Google Scholar 

  7. M. N. Gardos, H. S. Hong and W. O. Winer; Tribol. Trans. 32, 209 (1990).

    Article  Google Scholar 

  8. M. N. Gardos (private communication, 1999).

    Google Scholar 

  9. M. N. Gardos in Tribology Issues and Opportunities in MEMS, p. 341, B. Bhushan ed., Kluwer, 1998; Surface and Coatings Technology 113, 183 (1999).

  10. J. L. Davidson, R. Ramesham, and C. Ellis, J. Electrochem. Soc. 137, 3206 (1990).

    Article  CAS  Google Scholar 

  11. M. Aslam, G. S. Yang, and A. Masood, Sensors and Actuators A 45, 131 (1994).

    Article  CAS  Google Scholar 

  12. D. R. Wur, J. L. Davidson, W. P. Kang, and D. L. Kinser, J. Micromech. Syst. 4, 34 (1995).

    Article  CAS  Google Scholar 

  13. O. Dorsch, K. Holzner, M. Werner, E. Obermeir, R. E. Harper, C. Johnston, P. R. Chalker, and I. M. Buckley-Golder, Diamond Relat. Mater. 2, 1096 (1993).

    Article  CAS  Google Scholar 

  14. G. Zaho, E. M. Charlson, E. J. Charlson, T. Stacey, J. Meese, G. Popovici, and M. G. Prelas, J. Appl. Phys. 73, 1832 (1993).

    Article  Google Scholar 

  15. S. Moller, E. Obermeir, and J. Lin, Sensor and Actuators B: Chemical 25, 343 (1995).

    Article  Google Scholar 

  16. J. L. Davidson and W. P. Wang, Mater. Res. Soc Symp. Proc. 416, 397 (1996).

    Article  CAS  Google Scholar 

  17. G. S. Yang and D. M. Aslam, IEEE Electron. Dev. Lett. 17, 250 (1996).

    Article  CAS  Google Scholar 

  18. S. J. Harris and D. G. Goodwin, J. Phys. Chem 97, 23 (1993).

    Article  CAS  Google Scholar 

  19. D. M. Gruen, S. Liu, A. R. Krauss, J. Luo, and X. Pan, Appl. Phys. Lett. 64, 1502 (1994).

    Article  CAS  Google Scholar 

  20. D. M. Gruen, S. Liu, A. R. Krauss and X. Pan, J. Appl. Phys. 75, 1758 (1994). R. Csencsits, D. M. Gruen, A. R. Krauss and C. Zuiker, Mat. Res. Soc. Symp. Proc. 403, 291 (1996).

    Article  CAS  Google Scholar 

  21. A. N. Goyette, J. E. Lawler, L. W. Anderson, D. M. Gruen, T. G. McCauley, D. Zhou, and A. R. Krauss, J. Phys. D: App. Phys. 31, 1975–1986 (1998).

    Article  CAS  Google Scholar 

  22. P. C. Redfern, D. A. Horner, L. A. Curtiss and D. M. Gruen, J. Phys. Chem. 100, 11654 (1996).

    Article  CAS  Google Scholar 

  23. D. M. Gruen, C. D. Zuiker, A. R. Krauss, and X. Pan, J. Vac. Sci. Technol. A 13, 1628 (1995).

    Article  CAS  Google Scholar 

  24. J. A. Nuth, Nature, 329, 589 (1987).

    Article  Google Scholar 

  25. C. D. Zuiker, A. R. Krauss, D. M. Gruen, J. A. Carlisle, L. J. Terminello, S. A. Asher, and R. W. Bormett. Mat. Res. Soc. Proc. 437, 211 (1996).

    Article  CAS  Google Scholar 

  26. R. Csencsits, C. D. Zuiker, D. M. Gruen, A. R. Krauss, Solid State Phenom. 51–52, 261(1996).

    Article  Google Scholar 

  27. D. M. Gruen, S. Liu, A. R. Krauss, J. Luo and X. Pan, Appl. Phys. Lett. 64, 1502 (1994)

    Article  CAS  Google Scholar 

  28. A. Erdemir, C. Bindal, G. R. Fenske, C. Zuiker, R. Cesncsits, A. R. Krauss and D. M. Gruen, Diamond Films and Technology 6, 31 (1996).

    CAS  Google Scholar 

  29. O. Auciello, A. R. Krauss, D. M. Gruen, E. M. Meyer, H. G. Busmann, J. Tucek, A. Sumant, A. Jayatissa, M. Q. Ding, N. Moldovan, D. C. Mancini, and M. N. Gardos, Jour. of Microelectromechanical Systems (in press, 1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Auciello, O., Krauss, A.R., Gruen, D.M. et al. Two- and Three-Dimensional Ultrananocrystalline Diamond (UNCD) Structures for a High Resolution Diamond-Based MEMS Technology. MRS Online Proceedings Library 605, 73–78 (1999). https://doi.org/10.1557/PROC-605-73

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-605-73

Navigation