Skip to main content
Log in

High-Temperature Reliability of GaN Electronic Devices

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

High-quality GaN was grown using gas-source molecular-beam epitaxy (GSMBE). The mobility of undoped GaN was 350 cm2/Vsec and the carrier concentration was 6×1016 cm−3 at room temperature. A GaN metal semiconductor field-effect transistor (MESFET) and an n-p-n GaN bipolar junction transistor (BJT) were fabricated for hightemperature operation. The high-temperature reliability of the GaN MESFET was also investigated. That is, the lifetime of the FET at 673 K was examined by continuous current injection at 673 K. We confirmed that the FET performance did not change at 673 K for over 1010 h. The aging performance of the BJT at 573 K was examined during continuous current injection at 573 K for over 850 h. The BJT performance did not change at 573 K. The current gain was about 10. No degradation of the metalsemiconductor interface was observed by secondary ion-mass spectrometry (SIMS) and transmission electron microscopy (TEM). It was also confirmed by using Si-ion implantation that the contact resistivity of the GaN surface and electrode materials could be lowered to 7×10-6 ohmcm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. P. Chow and R. Tyagi, IEEE Trans. Electron Devices 41, 1481 (1994).

    Article  CAS  Google Scholar 

  2. H. Morkoc, S. Strites, G. B. Gao, M. E. Lin, B. Sverdlov and M. Burns, J. Appl. Phys. 76, 1363 (1994).

    Article  CAS  Google Scholar 

  3. S. C. Binari, B. L. Rowland, W. Kruppa, G. Kelner, K. Doverspike, and D. K. Gaskill, Electron. 30, 1248 (1994).

    CAS  Google Scholar 

  4. M. A. Khan, M. S. Shur, J. N. Kuzunia, Q. Chin, J. Burm and W. Schaff, Appl. Phys. 66, 1083 (1995).

    CAS  Google Scholar 

  5. A. Ozgur, W. Kim, Z. Fan, A. Botchkarev, A. Salvador, S. N. Mohammad, B. Sverdlov and H. Morko, Electron. 31, 1389 (1995).

    CAS  Google Scholar 

  6. O. Akutas, Z. F. Fan, S. N. Mohammad, A. E. Botchkarev and H. Morko, Appl. Phys. 69, 3872 (1996).

    Google Scholar 

  7. S. C. Binari, K. Doverspike, G. Kelner, H. B. Dietrich and A. E. Wickenden, Solid State Electron. 41, 97 (1997).

    Google Scholar 

  8. S. Yoshida, J. Appl. Phys. 81, 1673 (1997).

    Google Scholar 

  9. S. Yoshida, J. Cryst. Growth, 181, 293 (1997).

    Article  CAS  Google Scholar 

  10. S. Yoshida and J. Suzuki, Jpn. J. Appl. Phys. 37, L482 (1998).

    Article  CAS  Google Scholar 

  11. S. Yoshida and J. Suzuki, J. Appl. Phys. 84, 2940 (1998).

    Article  CAS  Google Scholar 

  12. J. Pankov, S. S. Chang, H. C. Lee, R. J. Molnar, T. D. Moustakas and B. Van Zeghbroeck, IEDM Tech. Dig., 389 (1994).

    Google Scholar 

  13. L. S. Mc Carthy, P. Kozodoy, M. J. W. Rodwell, S. P. Denbaars and U. K. Mishra, IEEE Electron Device. Lett. 20, 277 (1998).

    Google Scholar 

  14. S. Yoshida and J. Suzuki, J.Appl. Phys. 85, 7931 (1999).

    Article  CAS  Google Scholar 

  15. S. Yoshida and J. Suzuki, Jpn. J. Appl. Phys. 38, L851 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seikoh Yoshida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshida, S., Suzuki, J. High-Temperature Reliability of GaN Electronic Devices. MRS Online Proceedings Library 595, 48 (1999). https://doi.org/10.1557/PROC-595-F99W4.8

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-595-F99W4.8

Navigation