Skip to main content
Log in

Comparison of Valence-Band Tunneling in Pure SiO2, Composite SiO2 /Ta2O5, and Pure Ta2O5, in Mosfets with 1.0 nm-Thick SiO2-Equivalent Gate Dielectrics

  • Published:
MRS Online Proceedings Library Aims and scope

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The gate tunneling current in ultrathin gate dielectric NMOSFETs with positive gate bias is due to the tunneling of electrons from the conduction and valence bands of the substrate. Valence-band electrons tunnel from the substrate of NMOS devices when the valence-band edge in the substrate rises above the conduction-band edge in the substrate. This paper reports experimental trends in the contribution of valence-band electrons tunneling to the gate current of NMOSFETs with gate oxides composed of pure SiO2. The large gate tunneling current can be reduced by replacing the conventional SiO2 gate dielectric with alternative dielectrics with larger dielectric constants. This paper reports the effect of replacing SiO2 with alternative dielectrics on the contribution of valence-band electron tunneling to the gate current. Simulations are carried out for composite SiO2/Ta2O5 gate dielectric structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Modeli, Appl. Surf. Sci., 30, 298 (1987).

    Article  Google Scholar 

  2. B. Eitan and A. Kolodny, Appl. Phys. Lett., 43, 106 (1983).

    Article  CAS  Google Scholar 

  3. B. Majkusiak, IEEE Trans. on Electron Devices, 37, 1087 (1990).

    Article  Google Scholar 

  4. C. Chang, et al., J. Appl. Phys., 57, 302 (1985).

    Article  CAS  Google Scholar 

  5. C. Chang, et al., p. 194, IEDM, 1983.

    Google Scholar 

  6. C. Bowen, et al., p. 869, IEDM, 1997.

    Google Scholar 

  7. A. Shanware, et al., submitted to IEEE Electron Device Letters.

  8. Q. Lu, et al., IEEE Electron Device Lett., 19, 341 (1998).

    Article  CAS  Google Scholar 

  9. D. Park, et al., IEEE Electron Device Lett., 19, 441 (1998).

    Article  CAS  Google Scholar 

  10. I. Kizilyalli, et al., IEEE Electron Device Lett., 19, 423 (1998).

    Article  CAS  Google Scholar 

  11. P. K. Roy, et al., Appl. Phys. Lett., 72, 2835 (1998).

    Article  CAS  Google Scholar 

  12. E. Vogel, et al., IEEE Trans. on Electron Devices, 45, 1350 (1998).

    Article  CAS  Google Scholar 

  13. J. R. Hauser and K. Ahmed, p. 235, International Conference on Characterization and Metrology for ULSI Technology - 1998, Edited by D. G. Seiler, A. C. Diebold, W. M. Bullis, T. J. Shaffner, R. McDonald, and E. J. Walters, American Institute of Physics, 1998.

  14. S. Zaima, et al., J. Electrochem. Soc., 137, 853 (1990).

    Google Scholar 

  15. J. Simmons, J. Appl. Phys., 34, 1793 (1963).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shanware, A., Massoud, H.Z., Vogel, E. et al. Comparison of Valence-Band Tunneling in Pure SiO2, Composite SiO2 /Ta2O5, and Pure Ta2O5, in Mosfets with 1.0 nm-Thick SiO2-Equivalent Gate Dielectrics. MRS Online Proceedings Library 567, 515–520 (1999). https://doi.org/10.1557/PROC-567-515

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-567-515

Navigation